

engineers | scientists | innovators

ALTERNATE SOURCE DEMONSTRATION – ECONOMIZER ASH AND PYRITE POND SYSTEM

Big Bend Power Station 13031 Wyandotte Road Gibsonton, FL 33572

Prepared for

Tampa Electric Company Tampa, Florida

Prepared by

Geosyntec Consultants, Inc. 12802 Tampa Oaks Boulevard, STE 151 Tampa, FL 33637

Project FR2814.01

13 April 2018

TABLE OF CONTENTS

1.	PUR	POSE OF ALTERNATE SOURCE DEMONSTRATION REPORT	4
	1.1	Regulatory Background	4
	1.2	Objective of ASD	4
2	ALT	ERNATE SOURCE DEMONSTRATION APPROACH	6
	2.1	Evaluation of Inherent Error	6
	2.2	Evaluation of Natural Variation	6
	2.3	Evaluation of Groundwater Flow Direction	7
3.	DEM	IONSTRATION OF OTHER REASONS FOR STATISTICAL INCREASE	8
	3.1	Findings from Evaluation of Inherent Error	8
	3.2	Findings from Evaluation of Natural Variation	8
		3.2.1 Anthropogenic Background Data – Surficial Aquifer	8
		3.2.2 Natural Background Data – Surficial Aquifer	9
	3.3	Findings from Evaluation of Groundwater Flow Direction	9
4.	CON	ICLUSIONS AND RECOMMENDATIONS	10
5.	REF	ERENCES	11

LIST OF TABLES

 Table 1
 TECO Big Bend EAPPS Analytical Groundwater Results

Table 2 Statistical Comparison of Background Groundwater pH in the Surficial Aquifer

LIST OF FIGURES

- Figure 1 CCR Monitoring Well Locations
- Figure 2 BBS Monitoring Well Network
- Figure 3 Surficial Aquifer Potentiometric Surface June 2016
- Figure 4 Surficial Aquifer Potentiometric Surface August 2016
- Figure 5 Surficial Aquifer Potentiometric Surface November 2016
- Figure 6 Surficial Aquifer Potentiometric Surface April 2017
- Figure 7 Surficial Aquifer Potentiometric Surface October 2017

- Figure 8 Regional Surficial Aquifer Monitoring Well Locations
- Figure 9 Surficial Aquifer Groundwater Potentiometric Surface Map August 2014

LIST OF APPENDICIES

- Appendix A Summary of Statistical Analyses of Baseline Groundwater Samples
- Appendix B EPA 530-R-93-017 Subpart E Section 5.10
- Appendix C Groundwater Sampling and Calibration Forms October 13, 2017

1. PURPOSE OF ALTERNATE SOURCE DEMONSTRATION REPORT

On behalf of the Tampa Electric Company (TEC), Geosyntec Consultants. Inc. (Geosyntec) has prepared this alternate source demonstration (ASD) for the economizer ash and pyrite pond system (EAPPS) at the TEC's Big Bend Power Station (BBS) in Gibsonton, Florida. This ASD has been prepared to meet the requirements of the U. S. Environmental Protection Agency's (USEPA) coal combustion residual (CCR) Rule 40 CFR Part 257.94(e)(2) which states:

The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. The owner or operator must complete the written demonstration within 90 days of detecting a statistically significant increase over background levels to include obtaining a certification from a qualified professional engineer verifying the accuracy of the information in the report.

1.1 Regulatory Background

In June 2016, TEC implemented baseline groundwater sampling as part of closure requirements for the EAPPS. The monitoring well network consists of two background locations (BBS-CCR-BW1 and BBS-CCR-BW2) and three downgradient locations (BBS-CCR-1, BBS-CCR-2, and BBS-CCR-3) installed within the surficial aquifer at the EAPPs (**Figure 1**). Data from the 10 baseline monitoring events and the first detection monitoring events presented in **Table 1**.

In accordance with the provisions established in 40 CFR 257.93, background concentrations were established for each of the constituents listed in 40 CFR 257 Appendix III by analyzing the data from the two background wells present at EAPPS. A 95% upper prediction limit (UPL) was established for each constituent from the results of 10 baseline sampling events occurring between June 2016 and August 2017. For pH a lower prediction limit (LPL) was also determined since acidic water could potentially be an indicator of a release. The first detection monitoring event occurred in October 2017 and resulted in a statistically significant increase (SSI) in pH above the established UPL of 6.70 standard units (SU) in two of the three downgradient monitoring wells, namely 6.83 and 6.87 SU in BBS-CCR-1, and BBS-CCR-2, respectively. The pH SSIs were documented in a summary memorandum entitled "Summary of Statistical Analyses of Baseline Groundwater Samples" dated 15 January 2018 (Appendix A).

1.2 Objective of ASD

The purpose of this ASD is to document that the SSIs for pH are not associated with a release from the EAPPS. Although 40 CFR 257 does not contain requirements for an ASD beyond the requirements in 257.94(e)(2), the EPA document *Solid Waste Disposal Facility Criteria Technical Manual EPA 530-R-93-017*, November 1993, Subpart E provides guidance on what would be included in an ASD for a municipal solid waste landfill. Geosyntec's approach has been modeled after Section 5.10 of Subpart E (excerpt provided in **Appendix B**) and the analytical techniques and methods presented in *Guidelines for Development of Alternative Source Demonstrations at*

Coal Combustion Residual Sites (EPRI, 2017). This ASD is based on the following three lines of evidence:

- There is inherent error present in the equipment used to measure pH in the field;
- There is natural variation within pH ranges from both BBS background wells and regional monitoring wells;
- A change in local groundwater flow direction will result in the influence from higher pH waters within the immediate vicinity of the EAPPS.

The approaches developed to evaluate the evidence is provided in Section 2 of this report. The justification and support for each approach is provided in Section 3 of this report.

2. ALTERNATE SOURCE DEMONSTRATION APPROACH

2.1 Evaluation of Inherent Error

Given that pH is a parameter that is collected in the field during groundwater sampling, a possible source of error exists in both the calibration of the measurement instrument and the inherent error present due to the accuracy limits of the instrument. Due to this possibility, a thorough investigation of the instrument calibration forms and groundwater sampling forms was conducted to verify that calibration and sampling were accomplished in accordance with standard operating procedures established by the Florida Department of Environmental Protection (FDEP) in FS 2200. A review of pertinent field logs was performed to identify if the pH probe used to collect the detection monitoring samples from wells BBS-CCR-1 and BBS-CCR-2 was properly calibrated, if the calibration drifted throughout the course of the sampling event, if an adequate amount of groundwater was withdrawn to obtain a representative sample from each monitoring well, and if pH readings were allowed to stabilize prior to sample collection. Additionally, the accuracy limitations of the instrument used to measure pH was assessed and compared to the baseline UPL to ascertain if the margin of error for the two pH measurements in question is below the UPL.

2.2 Evaluation of Natural Variation

Because no other Appendix III constituent exhibited a SSI in the October 2017 detection monitoring event, pH results in BBS-CCR-1 and BBS-CCR-2 are not believed to be the result of a release from the EAPPS, but are rather indicative of background levels in the surficial aquifer. To evaluate background pH, data collected from the TEC industrial wastewater (IWW) and remedial action plan (RAP) monitoring well network (**Figure 2**) were obtained for the period of August 2008 to November 2017 (**Table 2**). Three RAP wells within approximately 100 feet from the northwest, southwest, and southeast corners of the EAPPS (B-36, B-35, and B-17R, respectively) were selected for evaluation based on their upgradient proximity to the EAPPS (**Figure 3 to Figure 7**).

For comparison, monitoring wells B-4R, B-39, B-40, and B-41 have historically been designated as surficial aquifer background wells by TEC due to their locations upgradient of any TEC development along the perimeter of the property (**Figure 2**). Additionally, four surficial monitoring wells within the Southwest Florida Water Management District (SWFWMD) Regional Observation and Monitoring Program (ROMP) in the Tampa Bay, FL vicinity were identified for a regional background analysis based on available pH data (**Figure 8**). Historical ROMP data obtained by Geosyntec ranged from September 1985 to March 2003.

ProUCL version 5.1 (EPA, 2016) was utilized to generate a 95% upper confidence limit (UCL) of the arithmetic mean for pH values within each individual monitoring well and each dataset in general accordance with guidelines of Chapter 62-780.680 of the Florida Administrative Code (FAC). The most applicable data distribution provided by ProUCL was utilized. The 95% UCLs provide conservative estimates for the true arithmetic mean of each data set. These values were

compared to the October 2017 pH SSIs in BBS-CCR-1 and BBS-CCR-2 to determine if surficial groundwater pH in the vicinity of the EAPPS is exhibiting typical ranges of background variability.

2.3 Evaluation of Groundwater Flow Direction

Should the observed SSIs be the result of influence from background groundwater, a change in the flow direction of groundwater within the EAPPS would likely be observed. Potentiometric surface maps were generated from the baseline and detection monitoring events to compare the observed flow directions and determine if the SSIs could be the result of a change in flow direction.

3. DEMONSTRATION OF OTHER REASONS FOR STATISTICAL INCREASE

This section presents the results of the approaches discussed in Section 2 and provides support that the lines of evidence identified are plausible sources of the pH SSI.

3.1 Findings from Evaluation of Inherent Error

The sampling team used a YSI[®] multimeter for pH data collection (as well as temperature, specific conductivity, and dissolved oxygen) during monitoring well purging and sampling. Field forms from the October 2017 detection monitoring sampling event are provided in **Appendix C**. A review of the instrument calibration log recorded at 7:02 AM on 13 October 2017 reveals that a 3-point calibration for the pH probe was conducted in accordance with FDEP FS2200. Initial calibration verification (ICV) was conducted for a pH 7.0 SU buffer solution resulting in an acceptable reading of 7.03 SU at 7:06 AM. The continued calibration verification (CCV) performed at 2:29 PM upon the completion of the sampling activities resulted in an acceptable reading of 7.11 SU. Groundwater sampling forms documenting field parameter stabilization for BBS-CCR-1 and BBS-CCR-2 indicate that an adequate amount of water was withdrawn from each well prior to sampling to obtain a representative sample. Additionally, three consecutive pH readings were collected within ± 0.2 SU of each other signifying pH stabilization in each well.

A 0.08 SU drift in pH was observed in the post calibration verification but is not enough to explain why the pH concentrations of BBS-CCR-1 and BBS-CCR-2 (6.83 and 6.87 SU respectively) are outside of the background level of 6.70 SU. However, the error inherent to the instrument itself is accurate within \pm 0.2 SU (YSI, 2009). As a result, the October 2017 pH values at BBS-CCR-1 and BBS-CCR-2 are more correctly stated as 6.83 ± 0.2 SU and 6.87 ± 0.2 SU, indicating that the 6.70 SU background level is within the accuracy limits of the instrument.

3.2 Findings from Evaluation of Natural Variation

Statistics for pH data from TEC surficial monitoring wells immediately upgradient of the EAPPS, BBS surficial background monitoring wells, and regional SWFWMD ROMP surficial monitoring wells are included in **Table 2**. Results from 95% UCL calculations are summarized below.

3.2.1 Anthropogenic Background Data – Surficial Aquifer

The pH data from the Economizer Ash and Long-Term Fly Ash Pond monitoring wells (B-17R, B-35, and B-36) indicates the following:

- pH values ranged between 6.60 and 6.96 SU between May 2011 and May 2017;
- 95% UCL values for individual monitoring wells ranged between 6.78 and 6.89 SU and
- The 95% UCL for pH within all three monitoring wells was calculated as 6.82 SU based on 35 total observations.

3.2.2 Natural Background Data – Surficial Aquifer

The pH data from TEC Big Bend IWW/RAP Background Monitoring Wells (B-4R, B-39, B-40, and B-41) indicates the following:

- pH values within the surficial TEC property background wells ranged from 5.81 to 7.31 SU between May 2011 to May 2017;
- 95% UCL values for individual monitoring wells ranged between 6.21 and 7.21 SU; and
- The 95% UCL for pH within all four monitoring wells calculated using 51 total observations is 6.85 SU.

The pH data from the SWFWMD ROMP Monitoring Wells indicates the following:

- pH values ranged between 5.59 and 7.42 SU between September 1985 and March 2003;
- Three of the four monitoring wells had an insufficient number of data points (< 8) to calculate a 95% UCL. Arithmetic mean values are reported for these wells instead. Arithmetic mean and 95% UCL values ranged between 5.77 and 7.25 SU within the individual ROMP wells; and
- The 95% UCL for pH within all four ROMP wells calculated using 34 total observations is 7.13 SU

A 95% UCL of 6.93 SU was also calculated using the combined TEC background and ROMP background well data (85 total observations) over an average range from 5.59 to 7.42 SU.

3.3 Findings from Evaluation of Groundwater Flow Direction

Seasonal variations (e.g., wet and dry seasons) in groundwater flow direction from June 2016 to October 2017 (wet to dry seasons) are presented in **Figure 3** (June 2016), **Figure 4** (August 2015), **Figure 5** (November 2016), **Figure 6** (April 2017), and **Figure 7** (October 2017). Since the installation of the EAPPS monitoring well network in May 2016, little variability in groundwater flow direction was observed during the baseline monitoring events with a predominately north-northeast flow direction observed from background wells BBS-CCR-BW1 and BBS-CCR-BW2 towards the three upgradient monitoring wells located along the northern and eastern borders of the EAPPS. **Figures 3-6** illustrate that surficial groundwater was flowing towards the EAPPS monitoring wells from RAP monitoring well B-35 consistently and that B-36 has been cross to upgradient of BBS-CCR-1 periodically. Similarly, the location of B-17R is typically upgradient of the EAPPS and BBS-CCR-3 based on the northward flow direction observed at BBS-CCR-BW-1 throughout baseline sampling events.

However, noticeable change in groundwater elevations was observed during the October 2017 detection monitoring event, resulting in a more pronounced east-west component across the EAPPS (**Figure 7**). Additionally, a south-southwesterly component appears to be present based on the reversal of gradients observed between monitoring wells BBS-CCR-3 and BBS-CCR-BW-1. These westerly flow components are more aligned with the regional flow across BBS which follows a general east to west flow pattern towards Tampa Bay (**Figure 9**).

4. CONCLUSIONS AND RECOMMENDATIONS

Based on the data review and analysis presented in this ASD, Geosyntec concludes the following regarding the pH SSIs observed in October 2017:

- The margin of error in the pH instrument of ± 0.2 SU means that the background pH level of 6.70 SU is also between 6.50 and 6.90 SU. As a result, the pH values at BBS-CCR-1 and BBS-CCR-2 of 6.83 and 6.87 SU, respectively, are within the margin of error of the instrument and should not be considered SSIs.
- The range of pHs in background adjacent to the EAPPS (6.78 SU to 6.89 SU with a total 95% UCL of 6.82 SU) and BBS to regional background (5.59 to 7.42 SU with a total 95% UCL of 6.93 SU) encompasses the range of pH values (6.30 and 6.70 SU) observed at the EAPPS.
- Subtle changes in groundwater flow direction at the EAPPS (observed in October 2017 during the detection monitoring event) indicates that groundwater originating from the southeast and northwest migrates towards the EAPPS, thus providing for mixing of background groundwater (both anthropogenic and natural) with local groundwater.

This ASD documents that the statistically significant increase in pH at two downgradient monitoring wells is from a source other than the EAPPS. Therefore, the EAPPS will remain in the detection monitoring program.

5. REFERENCES

- Electric Power Research Institute (EPRI). 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites.
- Geosyntec Consultants, Inc. 2018. Technical Memorandum: Summary of Statistical Analyses of Baseline Groundwater Samples Economizer Ash and Pyrite Pond System.
- Southwest Florida Water Management District (SWFWMD). 2018. Water Management Information System: <u>https://www.swfwmd.state.fl.us/data/hydrologic</u>
- United States Environmental Protection Agency (EPA). 2002. 40 CFR Part 257 Criteria for Classification of Solid Waste Disposal Facilities and Practices.
- United States Environmental Protection Agency (EPA). 1993. Solid Waste Disposal Facility Criteria. *Technical Manual 530R-93-017 Subpart E*.
- United States Environmental Protection Agency (EPA). 2016. ProUCL Version 5.1. Statistical Support Software for Site Investigation and Evaluation.

YSI Environmental. 2009. YSI 556 MPS Operations Manual.

TABLES

TECO, Big Bend Facility Apollo Beach, Florida

			Well ID					BBS-CCI	R-BW1					
		S	ample Date	6/24/2016	7/27/2016	8/26/2016	10/28/2016	11/10/2016	1/26/2017	4/13/2017	6/28/2017	7/20/2017	8/16/2017	10/13/2017
Parameter	Units	MCL	Bkgd*	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Top of Casing Elevation	ft NAVD 88			30.13	30.13	30.13	30.13	30.13	30.13	30.13	30.13	30.13	30.13	30.13
Depth to Water	ft BTOC			25.37	26.19	25.78	29.42	29.84	30.49	30.71	29.92	28.89	28.74	29.60
Groundwater Elevation	ft NAVD 88			4.76	3.94	4.35	0.71	0.29	-0.36	-0.58	0.21	1.24	1.39	0.53
Temperature	С	NA		27.84	28.25	28.11	27.46	27.50	26.98	27.20	27.72	27.89	28.08	28.16
Specific Conductivity (field)	umhos/cm	NA		5620	5420	5140	4860	5000	4940	1580	5010	4960	5000	4570
pH (field)	SU	6.5 - 8.5		6.51	6.38	6.41	6.50	6.52	6.46	6.49	6.47	6.49	6.52	6.55
Dissolved Oxygen	mg/L	NA		0.180	0.170	0.120	0.130	0.130	0.200	0.140	0.420	0.600	0.450	0.400
Redox Potential	mV	NA		-8.60	-7.30	-22.80	-76.20	-71.1	-20.2	-114.00	-11.4	-23.00	3.60	-18.40
Turbidity (field)	NTU	NA		5.14	7.10	6.47	4.08	1.77	2.04	4.22	0.69	2.38	6.03	2.51
Appendix III Parameters														
Boron	mg/L	1.4**	54.6	59.1	56.9	53.7 V	51.4	49.7	45.9	49.0	51.7	47.00	48.00	44.20
Calcium	mg/L	NA	997.5	781	737	729	675 V	692	728	693	781	744 V	743	691
Chloride	mg/L	250	1088	1140 J-	1120	1030	939 V	993 V	942 V	934	995	915 V	793	809
Fluoride	mg/L	4***	0.664	0.199	0.110	0.180	0.194	0.261	0.315	0.256	0.298	0.255 J	0.0100 U	0.334
Sulfate	mg/L	250	1677	1440 J-	1510	1420	1400	1440	1520	1550	1510	1470	1320	217
Total Dissolved Solids	mg/L	500	5418	5050 J-	4190 (-)	4290	4120 J-	4170 J-	4510 J	4060 J	4430	4160 J	4340	3890
Appendix IV Parameters														
Antimony	ug/L	6	1.47	0.600 U	0.600 U	1.77 I	6.00 U	0.600 U	0.600 U	0.600 U	0.600 U	6.00 U	0.600 U	0.600 U
Arsenic	ug/L	10	8.89	10.2	8.10	8.89	3.20 U	8.49	0.320 U	8.61	7.68	8.48 I	6.60	9.06
Barium	ug/L	2000	106	72.9	68.2	61.4	60.0	61.2	54.6	53.6	55.4	51.7	55.6	55.8
Beryllium	ug/L	4	0.215	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U
Cadmium	ug/L	5	0.235	0.100 U	0.100 U	0.100 U	1.00 U	0.100 U	0.100 U	0.108 l	0.124 I	1.00 U	0.100 U	0.100 U
Chromium	ug/L	100	2.45	1.60 U	1.60 U	1.60 U	1.60 U	1.60 U	1.60 U	3.23 I	2.29 I	2.16 I	2.48 J	1.6 U
Cobalt	ug/L	140**	1.61	1.40 I	1.33 I	1.52 I	0.963 l	1.45 I	1.50 I	2.0 U	1.71 I	1.97 l	1.66 J	1.86
Lead	ug/L	15	0.265	0.0800 U	0.200 l	0.111 I	0.800 U	0.102 I	0.113 I	0.129 l	0.0800 U	0.800 U	0.291 J	0.103
Lithium	ug/L	140**	19	8.9 I	20 I	7.4 I	11 I	10 I	18 I	39.7	15 U	17 I	0.050 U	17 I,V
Mercury	ug/L	2	0.0500	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
Molybdenum	ug/L	35**	12.8	4.46 I	2.88 I	11.1 I	6.00 I	6.58 I	7.16 I	15.6 I	16.3 U	13.6 I	1.43 J	4.27
Radium 226/228	pCi/L	1	38.2	38	35	31	32.3	29.9	32.5	39.7	37.8	37.2	30.1	22.1
Selenium	ug/L	50	2.08	2.09	1.92 I	1.73 I	2.00 U	2.51	0.200 U	1.62 I	1.81 I	2.00 U	1.76 J	2.14
Thallium	ug/L	2	0.229	0.118 I	0.100 U	0.100 U	1.00 U	0.100 U	0.100 U	0.100 U	0.100 U	1.00 U	0.100 U	0.100 U

TECO, Big Bend Facility Apollo Beach, Florida

			Well ID	BBS-CCR-BW2										
		S	ample Date	6/24/2016	7/27/2016	8/26/2016	10/28/2016	11/10/2016	1/26/2017	4/13/2017	6/28/2017	7/20/2017	8/16/2017	10/13/2017
Parameter	Units	MCL	Bkgd*	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Results Q	Results Q	Result Q
Top of Casing Elevation	ft NAVD 88			9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	9.81	30.13
Depth to Water	ft BTOC			4.72	5.52	5.22	8.06	8.45	9.13	9.24	8.53	7.45	7.33	7.38
Groundwater Elevation	ft NAVD 88			5.09	4.29	4.59	1.75	1.36	0.68	0.57	1.28	2.36	2.48	22.75
Temperature	С	NA		26.42	27.56	27.74	27.22	27.10	25.25	30.71	26.69	27.20	27.69	27.95
Specific Conductivity (field)	umhos/cm	NA		1640	1500	1380	1340	1400	1460	1480	1538	1540	1580	1700
pH (field)	SU	6.5 - 8.5		6.53	6.48	6.48	6.67	6.68	6.62	6.67	6.64	6.66	6.68	6.70
Dissolved Oxygen	mg/L	NA		0.370	0.150	0.100 U	0.370	0.200	0.300	1.32	0.190	0.330	0.430	0.280
Redox Potential	mV	NA		-59.4	-84.1	-59.5	-91.5	-73.8	-74.1	-42.0	-82.4	-94.0	-53.3	-72.10
Turbidity (field)	NTU	NA		6.70	4.86	1.73	3.99	5.86	16.4	19.0	6.1	5.3	3.66	3.96
Appendix III Parameters														
Boron	mg/L	1.4**	54.6	3.89	4.25	3.70 V	3.90	3.75	3.27	4.08	4.54 J-	4.57	4.39	4.08
Calcium	mg/L	NA	997.5	313	271	237	238 J-,V	243	240	260	290 J-	278 V	287	321
Chloride	mg/L	250	1088	123	116	116	125 V	129 V	145 V	140	135	123 V	117	84.9
Fluoride	mg/L	4***	0.664	0.409	0.432	0.455	0.440	0.464	0.472	0.478	0.559	0.319 J	0.352	0.513
Sulfate	mg/L	250	1677	414	341	276	246	255	255	323	402	41.7	462	632
Total Dissolved Solids	mg/L	500	5418	1230	1060	980	1010	966 J-	1140	1120	1170	1200	1180	1330
Appendix IV Parameters														
Antimony	ug/L	6	1.47	0.600 U	0.600 U	0.600 U	0.600 U	0.600 U	0.600 U	0.600 U	0.600 U	6.000 U	0.600 U	0.600 U
Arsenic	ug/L	10	8.89	2.65	1.75 l	2.03	1.62 I	2.59	0.709 l	1.45 I	1.68 I	3.20 U	1.80	2.01
Barium	ug/L	2000	106	51.3	49.8	43.2	46.3	45.8	38.8	42.7	48.8	47.7	49.9	56.2
Beryllium	ug/L	4	0.215	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.220 U	0.200 U	0.254 J
Cadmium	ug/L	5	0.235	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	1.00 U	0.100 U	0.100 U
Chromium	ug/L	100	2.45	1.60 U	1.60 U	1.60 U	1.60 U	1.60 U	1.60 U	1.60 U	1.68 I	2.26 I	1.60 U	1.60 U
Cobalt	ug/L	140**	1.61	1.00 U	0.14 I	0.153 l	0.151 I	0.157 l	0.136 I	2.0 U	0.0959 I	0.400 U	0.110	0.129 J
Lead	ug/L	15	0.265	0.0800 U	0.0800 U	0.0800 U	0.0800 U	0.0800 U	0.0800 U	0.0800 U	0.0800 U	0.800 U	0.101	0.800 U
Lithium	ug/L	140**	19	3.8 I	9.1 I	2.0 I	3.8 I	1.7 I	5.2 I	3.4	5.2 I	5.9 I	0.050 U	8.2 I,V
Mercury	ug/L	2	0.0500	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
Molybdenum	ug/L	35**	12.8	2.40 I	1.00 U	7.57	1.42 I	1.00 U	2.56 I	9.65 I	10.2 U	8.9 I	4.08	2.51 J
Radium 226/228	pCi/L	1	38.2	4.8	5.1 J	4.0	4.8	8.0	4.8 J	4.5	4.8	4.4	4.9	4.9
Selenium	ug/L	50	2.08	0.722 I	0.760 I	0.577 I	0.489 I	0.485 I	0.260 I	0.539 I	0.386 I	2.00 U	0.420	0.523 J
Thallium	ug/L	2	0.229	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	1.00 U	0.100 U	0.100 U

TECO, Big Bend Facility Apollo Beach, Florida

			Well ID						BBS-CCR-1					
		S	ample Date	6/24/2016	7/27/2016	8/26/2016	10/28/2016	11/10/2016	1/26/2017	4/13/2017	6/28/2017	7/20/2017	8/16/2017	10/13/2017
Parameter	Units	MCL	Bkgd*	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Results Q	Results Q	Result Q
Top of Casing Elevation	ft NAVD 88			7.79	7.79	7.79	7.79	7.79	7.79	7.79	7.79	7.79	7.79	7.79
Depth to Water	ft BTOC			3.51	5.00	5.06	6.78	7.38	7.46	7.64	7.41	5.86	7.03	7.32
Groundwater Elevation	ft NAVD 88			4.28	2.79	2.73	1.01	0.41	0.33	0.15	0.38	1.93	0.76	0.47
Temperature	С	NA		25.48	26.41	27.05	25.78	25.70	24.03	23.70	25.54	25.81	25.80	26.57
Specific Conductivity (field)	umhos/cm	NA		3940	4180	4000	4060	4290	4320	4170	4063	3960	4110	4260
pH (field)	SU	6.5 - 8.5		6.80	6.67	6.71	6.83	6.82	6.79	6.84	6.78	6.81	6.82	6.83
Dissolved Oxygen	mg/L	NA		0.100	0.220	0.140	0.10 U	0.100 U	0.100 U	0.100 U	0.270	0.100	0.280	0.240
Redox Potential	mV	NA		-49.1	-74.1	-34.8	-107.0	-136	-110	-80.40	-80.60	-122.00	-109.00	-83.30
Turbidity (field)	NTU	NA		8.01	3.88	2.08	3.22	0.890	1.99	4.12	3.63	1.58	1.88	0.89
Appendix III Parameters														
Boron	mg/L	1.4**	54.6	14.4	0.306	11.4	15.7	16.2	15.5 J-	16.4	16.5	16	17	19.90
Calcium	mg/L	NA	997.5	541	227	556	556 V	606	579 J-	555	569	576 V	572	596.00
Chloride	mg/L	250	1088	619	742 J-	695	743 J-	817 V	820 V	124	720	694 J-, V	710	716
Fluoride	mg/L	4***	0.664	0.211	0.128	0.454	0.104	0.0871	0.184	0.170	0.208	0.157	0.200	0.201
Sulfate	mg/L	250	1677	1240	1320 J-	1240	1230 J-	1290	1350	443	1120	1390	1240	1230
Total Dissolved Solids	mg/L	500	5418	3060 J	3140	2980	3170 J-	3470 J-	3670 J	3110 J	3140	3400	2960	J 3470
Appendix IV Parameters														
Antimony	ug/L	6	1.47	0.600 U	1.03 I	0.600 U	0.600 U	0.600 U	0.602 l	0.600 U	0.600 U	3.00 U	0.600	J 0.600 U
Arsenic	ug/L	10	8.89	8.74	7.38	7.94	8.30	8.93	9.04	10.5	9.76	10.3	9.33	9.03
Barium	ug/L	2000	106	122	30.8	115	122	129	115	116 I	113	112	122	129
Beryllium	ug/L	4	0.215	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	<mark>2.00</mark> U	0.200 U	0.200 U	0.200	J 0.200 U
Cadmium	ug/L	5	0.235	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.500 U	0.100	J 0.100 U
Chromium	ug/L	100	2.45	1.60 U	1.60 U	1.60 U	1.60 U	1.60 U	1.60 U	1.60 U	1.93 I	1.62	1.60	J 1.60 U
Cobalt	ug/L	140**	1.61	1.00 U	0.450 l	0.485	0.507 l	0.519 l	0.489 I	<mark>2.0</mark> U	0.484 I	0.495	0.473	J 0.453 J
Lead	ug/L	15	0.265	0.0800 U	0.110 I	0.0800 U	0.0800 U	0.0800 U	0.0800 U	0.0979 I	0.0800 U	<mark>0.400</mark> U	0.080	J 0.080 U
Lithium	ug/L	140**	19	8.3 I	15 I	7.4 I	12 I	8.4 I	14 I	10 I	13 I	14 I, J3	0.050	J 15 I,V
Mercury	ug/L	2	0.0500	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500	J 0.0500 U
Molybdenum	ug/L	35**	12.8	106	105	80.3	95.5	98.4	92.4	124 I	96.5 I	99.6	86.4	82.5
Radium 226/228	pCi/L	1	38.2	39	33	15	42.6	37.3	32.5	35.8 I	41.4	34.7	33.4	35.6
Selenium	ug/L	50	2.08	0.696 I	0.960 I	0.385	0.690 l	1.04 I	0.653 I	0.937 I	0.756 I	2.25 I	0.918	J 0.99 J
Thallium	ug/L	2	0.229	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.500 U	0.100	J 0.100 U

TECO, Big Bend Facility Apollo Beach, Florida

			Well ID	BBS-CCR-2										
		S	ample Date	6/24/2016	7/27/2016	8/26/2016	10/28/2016	11/10/2016	1/26/2017	4/13/2017	6/28/2017	7/20/2017	8/16/2017	10/13/2017
Parameter	Units	MCL	Bkgd*	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Results Q	Results Q	Result Q
Top of Casing Elevation	ft NAVD 88			8.14	8.14	8.14	8.14	8.14	8.14	8.14	8.14	8.14	8.14	8.14
Depth to Water	ft BTOC			3.45	5.30	5.35	6.78	6.88	6.93	7.15	6.97	5.06	6.53	6.88
Groundwater Elevation	ft NAVD 88			4.69	2.84	2.79	1.36	1.26	1.21	0.99	1.17	3.08	1.61	1.26
Temperature	С	NA		25.62	26.42	27.35	25.64	25.66	24.27	23.95	25.12	25.74	26.43	26.46
Specific Conductivity (field)	umhos/cm	NA		1580	1700	1570	1500	1540	1560	1540	1485	1630	1560	1350
pH (field)	SU	6.5 - 8.5		6.80	6.68	6.74	6.87	6.89	6.89	6.93	6.87	6.97	6.92	6.87
Dissolved Oxygen	mg/L	NA		0.100	0.130	0.100 U	0.100	0.130	0.100 U	0.100 U	0.240	0.100 U	0.250	0.200
Redox Potential	mV	NA		-71.0	-67.4	-27.3	-183	-186	-182	-138	-131	-154.0	-233.0	-188
Turbidity (field)	NTU	NA		4.90	7.16	3.31	3.73	7.10	4.93	3.43	4.71	4.56	3.22	3.03
Appendix III Parameters														
Boron	mg/L	1.4**	54.6	1.55	2.81	2.86	2.08	2.28	3.86	5.01	3.20	4.94	4.32	0.888
Calcium	mg/L	NA	997.5	198	193	192	181 V	181	172	163	173	178 V	171	169
Chloride	mg/L	250	1088	118	140	124	112 V	111 V	115 J+	119	105	114 V	113	70.9
Fluoride	mg/L	4***	0.664	0.148	0.183	0.150	0.171	0.168	0.248 J+	0.237	0.214	0.166 J	0.155	0.182
Sulfate	mg/L	250	1677	471	542	484	468	468	490 J-	485 J-	415 J-	481	459	432
Total Dissolved Solids	mg/L	500	5418	1170 J-	1170	1120	1130	1110	1140	1150	1080	1140	1080	1030
Appendix IV Parameters														
Antimony	ug/L	6	1.47	0.600 U	0.830	0.600 U	0.600 U	0.600 U	0.600 U	0.600 U	0.600 U	0.600 U	1.20 U	0.600 U
Arsenic	ug/L	10	8.89	1.83 I	0.990 l	1.25	1.16 I	1.37 I	1.09 I	2.64	1.01 I	0.974 l	1.02	1.14
Barium	ug/L	2000	106	65.0	64.8	61.4	60.6	62.4	54.6	55.8	54.6	54.6	56.8	53.3
Beryllium	ug/L	4	0.215	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	<mark>0.423</mark> U	0.200 U	0.200 U
Cadmium	ug/L	5	0.235	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.200 U	0.200 U
Chromium	ug/L	100	2.45	1.60 U	1.60 U	1.60 U	1.60 U	1.60 U	1.60 U	2.29 I	1.96 I	3.11 I	1.60 U	1.60 U
Cobalt	ug/L	140**	1.61	1.00 U	0.0900 I	0.0776	0.107 l	0.105 I	0.0902 I	<mark>2.0</mark> U	0.0875 I	0.0857 I	0.150 J	0.115 J
Lead	ug/L	15	0.265	0.0800 U	0.110 I	0.0800 U	0.129 l	0.0955 I	0.0800 U	0.176 I	0.144 I	0.127 l	0.244 J	0.15 J
Lithium	ug/L	140**	19	10 I	17 I	11 I	14 I	11 I	13 I	13 I	14 I	16 I	0.050 U	16 I,V
Mercury	ug/L	2	0.0500	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
Molybdenum	ug/L	35**	12.8	1.73 I	1.00 U	7.78	1.00 U	1.43 I	2.52 I	9.82 I	9.59 U	9.88 I	3.02	1.99 J
Radium 226/228	pCi/L	1	38.2	15.0	13.2	32	14.9	14.8	13.9	14.2	14.7	14.4	12.1	13.5
Selenium	ug/L	50	2.08	0.376 I	0.280 I	0.200 U	0.333 I	0.259 I	0.200 U	0.200 U	0.200 U	0.474 I	0.662 J	0.474 J
Thallium	ug/L	2	0.229	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.200 U	0.200 U

TECO, Big Bend Facility Apollo Beach, Florida

			Well ID	BBS-CCR-3										
		S	ample Date	6/24/2016	7/27/2016	8/26/2016	10/28/2016	11/10/2016	1/26/2017	4/13/2017	6/28/2017	7/20/2017	8/16/2017	10/13/2017
Parameter	Units	MCL	Bkgd*	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q	Result Q
Top of Casing Elevation	ft NAVD 88			6.78	6.78	6.78	6.78	6.78	6.78	6.78	6.78	6.78	6.78	6.78
Depth to Water	ft BTOC			1.51	3.60	3.48	6.54	6.77	6.81	7.13	6.64	4.77	6.04	6.52
Groundwater Elevation	ft NAVD 88			5.27	3.18	3.30	0.24	0.01	-0.03	-0.35	0.14	2.01	0.74	0.26
Temperature	С	NA		26.62	27.28	27.07	26.20	26.10	24.25	24.27	26.15	26.73	26.86	27.18
Specific Conductivity (field)	umhos/cm	NA		1580	1740	1690	1640	1650	1510	1580	1755	1750	1790	1750
pH (field)	SU	6.5 - 8.5		6.42	6.19	6.29	6.42	6.46	6.42	6.49	6.38	6.36	6.42	6.44
Dissolved Oxygen	mg/L	NA		0.540	0.100 U	0.150	0.100 U	0.100 U	0.110	0.140	0.280	0.170	0.290	0.370
Redox Potential	mV	NA		-145	-74.4	-155.0	-266	-239	-168	-114	-125	-122	-206	-249
Turbidity (field)	NTU	NA		11.5	8.04	6.35	3.26	1.18	1.79	4.22	0.94	0.51	0.47	2.39
Appendix III Parameters														
Boron	mg/L	1.4**	54.6	0.662	13.2	0.540 V	0.532	0.502	0.381	0.385	0.184	0.211	0.266	0.373
Calcium	mg/L	NA	997.5	187	196	200	201 V	200	176	176	192	205 J-, V	187	190
Chloride	mg/L	250	1088	88.9	140	136	140 V	129 V	129 V	124	168	158 V	156	153
Fluoride	mg/L	4***	0.664	0.313	0.262	0.286	0.299	0.331	0.391	0.415	0.338	0.230 J	0.338	0.333
Sulfate	mg/L	250	1677	474	516	517	541	492	454	443	493	506	484	503
Total Dissolved Solids	mg/L	500	5418	1200	1220	1210	1220	1220	1200	1120	1280	1310	1290	1310
Appendix IV Parameters														
Antimony	ug/L	6	1.47	0.600 U	0.770 I	0.600 U	0.600 U	0.600 U	0.600 U	0.600 U	0.600 U	<mark>3.00</mark> U	0.600 U	0.600 U
Arsenic	ug/L	10	8.89	1.23 I	0.540 I	0.603 I	0.623 I	0.765 I	0.320 U	0.320 U	0.525 I	1.60 U	0.536 J	0.665 J
Barium	ug/L	2000	106	65.3	67.6	63.6	66.3	63.0	56.2	58.6	61.8	63.4	59.8	59.3
Beryllium	ug/L	4	0.215	0.200 U	0.200 U	0.272	0.200 U	0.200 U	0.200 U	0.200 U	0.200 U	<mark>0.356</mark> U	0.200 U	0.200 U
Cadmium	ug/L	5	0.235	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	<mark>0.500</mark> U	0.100 U	0.100 U
Chromium	ug/L	100	2.45	1.60 U	1.60 U	1.60 U	1.60 U	1.60 U	1.60 U	1.60 U	3.12 I	3.43 I	2.02 J	1.60 U
Cobalt	ug/L	140**	1.61	1.00 U	0.0900 I	0.125 I	0.124 I	0.117 I	0.0989 I	<mark>2.0</mark> U	0.119 I	0.200 U	0.123 J	0.115 J
Lead	ug/L	15	0.265	0.125 I	0.0800 I	0.0800 U	0.107 I	0.0800 U	0.0800 U	0.0800 U	0.0800 U	<mark>0.400</mark> U	0.0800 U	0.0800 U
Lithium	ug/L	140**	19	3.7 I	11 I	6.1 I	8.2 I	6.1 I	7.7 I	6.3 I	5.2 I	10 I	0.050 U	11 I,V
Mercury	ug/L	2	0.0500	0.0580	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U	0.0500 U
Molybdenum	ug/L	35**	12.8	4.09 I	2.23 I	8.10	3.63 I	3.90 I	5.42 I	11.7 I	11.9 U	10.6 I	3.14 J	3.82 J
Radium 226/228	pCi/L	1	38.2	10.3	12.3	15	18.1	17.5	15	14.4	17.7	20.3	19.6	20.0
Selenium	ug/L	50	2.08	0.262 I	0.270 I	0.200 U	0.200 U	0.253	0.200 U	0.200 U	0.200 U	1.00 U	0.200 U	0.285 J
Thallium	ug/L	2	0.229	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.100 U	0.500 U	0.100 U	0.100 U

Table 1: TECO Big Bend EAPPS Analytical Groundwater Results TECO, Big Bend Facility Apollo Beach, Florida

Notes:

1. U: Laboratory gualifer - Indicates that the compound was not detected above the reporting limit.

2. I: Laboratory qualifier - The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit; estimated value

3. J(-): Laboratory qualifier - The reported value is an estimated value.

4. J: Data validation qualifer - The analyte was postively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

5. UJ: Data validation qualifer - The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

6. J-: Data validation gualifer - The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.

7. V: Analyte detected in the method blank.

8. Q: Laboratory qualifer- Re-analysis of sample beyond the accepted holding time.

9. J3: Laboratory qualifer - Estimated value; value may not be accurate. Spike recovery or RPD outside of criteria.

9. MCLs - EPA Maximum Contaminant Levels; primary enforceable standards shown unless otherwise noted. Secondary (non-enforceable) standards shown in italics.

10. Detections shown in bold text and higlighted yellow when above background levels or enforceable federal MCLs or Florida Groundwater Cleanup Target Levels (GCTL) if background is less.

11. * Background concentration determined as two times the mean from BBS-CCR-BW1 and BBS-CCR-BW2 in accordance with FDEP Guidance Document "Guidance for Comparing Background and Site Chemical Concentrations in Groundwater" (July 2013). Non -

detects taken as 1/2 the reporting limit. Yellow shading indicates above background.

12. ** Florida GCTLs per FDEP Chapter 62-777 of the Florida Administrative Code. 13. *** Secondary MCL for fluoride is 2 mg/L but not enforceable.

14. Background / Upgradient Well shaded green.

15. Concentrations in red considered anomalous (July 2016).

Abbreviations:

Q - Data qualifier C - Celsius ft BTOC - feet below top of well casing mg/L - milligrams per liter SU - Standard units ft NAVD 88 - feet elevation in North American Vertical Datum 1988 ug/L - micrograms per liter umhos/cm - micromohs per centimeter

Table 2: Statistical Comparison of Background Groundwater pH in the Surficial Aquifer TECO Big Bend Station 13031 Wyandotte Road, Gibsonton, FL 33572

Monitoring Well Units Adjacent to EAPPS

TECO Big Bend Unit Name	Monitoring Wells	Period of Record	Number of Observations	pH ¹ Minimum	pH ¹ Maximum	95% UCL ²	Statistic ³
	B-17R	5/11 - 11/13	11	6.70	6.89	6.89	95% Student's-t UCL
Unit 20 (Economizer and Long Term Fly	B-35	5/11 - 5/17	12	6.60	6.92	6.78	95% Student's-t UCL
Ash Pond)	B-36	5/11 - 5/17	12	6.70	6.96	6.85	95% Student's-t UCL
	TOTAL	5/11 - 5/17	35	6.60	6.96	6.82	95% Adjusted Gamma UCL

TECO Big Bend and Regional Surficial Aquifer Background Monitoring Wells

Background Source	Monitoring Wells	Period of Record	Number of Observations	pH ¹ Minimum	pH ¹ Maximum	95% UCL ²	Statistic ³
	B-4R	5/11- 5/17	15	5.81	6.5	6.21	95% Student's-t UCL
	B-39	5/11 - 5/17	12	6.87	7.31	7.21	95% Student's-t UCL
TECO Big Bend IWW/RAP Background Wolls	B-40	5/11 - 5/17	12	6.70	7.10	7.00	95% Student's-t UCL
wens	B-41	5/11 - 5/17	12	6.60	7.10	6.97	95% Student's-t UCL
	TOTAL	5/11 - 5/17	51	5.81	7 31	6.85	95% Student's-t UCL

	TR 9-2	9/93 - 3/03	4	5.59	5.96	5.77*	Arithmetic Mean
SWFWMD ⁵ Pagianal Observation and	TR 9-3	9/85 - 3/03	19	6.75	7.42	7.25	95% Student's-t UCL
Monitoring Program	TR 10-2	9/85 - 3/03	7	6.71	7.16	7.00*	Arithmetic Mean
Monitoring Program	TR12-1	8/93 - 3/03	4	7.15	7.33	7.24*	Arithmetic Mean
	TOTAL	9/85 - 3/03	34	5.59	7.42	7.13	95% Student's-t UCL
	COMBINED ⁶	9/85 - 5/17	85	5.59	7.42	6.93	95% Student's-t UCL

Notes:

1. All results are reported for pH in standard units (SU).

2. 95% UCL = 95% of the Upper Confidence Limit of the arithmetic mean of the data set.

3. Statistics reported are the most appropriate based on the underlying distribution of each data set.

4. IWW and RAP refer to TECO's Industrial Wastewater and Remedial Action Plan monitoring well networks respectively.

5. SWFWMD = Southwest Florida Water Management District

6. Combined statistic represents the combination of both SWFWMD Regional Observation and Monitoring (ROMP) monitoring wells and TECO Big Bend background monitoring wells.

* Insufficient number of observations to calculate a 95% UCL; arithmetic mean reported instead.

FIGURES

Legend

- € Industrial Wastewater Well Location
- \bigcirc Remedial Action Plan Well Location
- Ð Upper Floridan Industrial Wastewater Well Location
- \bullet Upper Floridan Remedial Action Plan Well Location
- \bullet Well Location Abandoned in 2015

Approximate Site Boundary

- Long Term Fly Ash Pond/Reclaimed Water Pond (lined) (#22) South Economizer Ash Pond (lined) (#20) 1.
- 2.
- North Economizer Ash Pond (lined) (#20) Economizer Ash Suction Pond (lined) (#20) 3.
- 4. 5.
- South Bottom Ash Pond (lined) (#19) South Bottom Ash Pond (lined) (#19) North Bottom Ash Pond (lined) (#19) Bottom Ash Suction Pond (lined) (#19) Settling Basins (concrete) (#17/18) Settling Pond (lined) (#17/18) South Recycle Pond (lined) (#17/18) North Recycle Pond (lined) (#17/18) 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12. Storm Water Pond
- 13. Coal Field
- 14. BB Aero Unit CT4

- BB Aero Unit CT4
 Rail Car Unloading
 Gypsum Storage Area (#21)
 Slag Dewatering Bins
 Long Term Bottom Ash Area (#23)
 Dredge Disposal Area DA-2 (#1/2)
 Former Spray Field (#16)
 Limestone and FGD Area (#13/14)

Notes:

- 1. Site boundary as provided by Tampa Electric Company.
- 2. * indicates background monitoring well.
- R indicates replacement monitoring well.
 UF indicates monitoring well screen interval located in Upper Floridian Aquifer system.
- Prior to abandonment, MWC-19 was converted to an intermediate well and the designation changed to MWI-19.
- 6. Source of 2011 Aerials: Florida Department of Transportation, Surveying and Mapping Office.

MWC-10

13

	1.5 0.75	0 1.5 Mile	25
	Regional Surficial Aq	uifer Monitoring Well L	ocations
Legend ROMP Well Location	TE	C Big Bend Station Gibsonton, FL	
Approximate Site Boundary	Geosyr	ntec	
Notes: 1. ROMP locations were obtained from the Southwest Florida Water Management District (SWFWMD) Regional Observation and Monitoring Program (ROMP): https://www.swfwmd.state.fl.us/data/hydrologic/.	consu	ltants	Figure
2. 2017 World Imagery Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.	Tampa, FL	March 2018	8

Legend

€ Industrial Wastewater Well Location

- Remedial Action Plan Well Location
- Upper Floridan Industrial Wastewater Well Location

MWC-16R

[1.05]

MWC

13

12

[1.81]

[1.24]

20

F46

E

[4.02]

10 B

8

3.55

2

.78]

1

3.28]

6 7

5

18

1218

- \bullet Upper Floridan Remedial Action Plan Well Location
- [393] Groundwater Elevation (ft NGVD29)
- Inferred Groundwater Contour -

Groundwater Contour

Groundwater Flow Direction

Approximate Site Boundary

Long Term Fly Ash Pond/Reclaimed Water Pond (lined) (#22) 1. South Economizer Ash Pond (lined) (#20) 2. 3. North Economizer Ash Pond (lined) (#20)

- 4. Economizer Ash Suction Pond (lined) (#20) South Bottom Ash Pond (lined) (#19) 5. North Bottom Ash Pond (lined) (#19) Bottom Ash Suction Pond (lined) (#19) 6.
- 7.
- Settling Basins (concrete) (#17/18) 8.
- 9.
- Settling Pond (lined) (#17/18) South Recycle Pond (lined) (#17/18) 10.
- North Recycle Pond (lined) (#17/18) 11.
- 12. Storm Water Pond
- 13. Coal Field
- BB Aero Unit CT4 14.
- 15. Rail Car Unloading
- Gypsum Storage Area (#21) Slag Dewatering Bins 16.
- 17.
- Long Term Bottom Ash Area (#23) Dredge Disposal Area DA-2 (#1/2) 18.
- 19. 20. Former Spray Field (#16)
- 21. Limestone and FGD Area (#13/14)

Notes:

- 1. ft NGVD29 indicates feet National Geodetic Vertical Datum of 1929.
- 2. Site boundary as provided by Tampa Electric Company.
- 3. * indicates background monitoring well.
- 4. R indicates replacement monitoring well.
- 5. UF indicates monitoring well screen interval located in Upper Floridian Aquifer system.
- 6. The following monitoring wells were abandoned in 2015: B-5, B-10, B-11, B-13R, B-14R, B-17R, B-51, and B-60.
- '. Prior to abandonment, MWC-19 was converted to an intermediate well and the designation changed to MWI-19.
- Source of 2011 Aerials: Florida Department of Transportation, Surveying
- and Mapping Office.

APPENDIX A

SUMMARY OF STATISTICAL ANALYSES OF BASELINE GROUNDWATER SAMPLES

13101 Telecom Drive, Suite 120 Temple Terrace, Florida 33637 PH 813.558.0990 FAX 813.558.9726 www.geosyntec.com

Memorandum

Date:	15 January 2018
To:	Randy Melton
Copies to:	Terry Eastley Zel Jones
From:	Cathy Crea, M.Sc. Todd Kafka, PG
Subject:	Summary of Statistical Analyses of Baseline Groundwater Samples Economizer Ash and Pyrite Pond System Tampa Electric Company - Big Bend Station 13031 Wyandotte Road Gibsonton, FL 33572

On April 17, 2015, the United States Environmental Protection Agency (USEPA) published 40 Code of Federal Regulations (CFR) Parts 257 and 261: Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule (USEPA, 2015). This regulation addresses the safe disposal of coal combustion residuals (CCR) as solid waste under Subtitle D of the Resource Conservation and Recovery Act (RCRA) and is referred to herein as the CCR Rule. The CCR Rule became effective on October 14, 2015. The rule provides national minimum criteria for "the safe disposal of CCR in new and existing CCR landfills, surface impoundments, and lateral expansions, design and operating criteria, groundwater monitoring and corrective action, closure requirements and post closure care, and recordkeeping, notification, and internet posting requirements." The groundwater monitoring requirements of the CCR Rule apply to the economizer ash and pyrite pond system (EAPPS) at Tampa Electric Company's (TEC) Big Bend Power Station (BBS) in southeast Hillsborough County in Gibsonton, Florida.

Geosyntec Consultants (Geosyntec) has prepared this technical memorandum to summarize the statistical analyses performed on the baseline groundwater samples collected from the groundwater monitoring system (GMS) established at the EAPPS. These activities have been undertaken by TEC to comply with the requirements set forth in 40 CFR 257.50 "Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments" pertaining to the EAPPS. TEC installed

TEC EAPP_baseline stats memo_15JAN18

CCR Groundwater Statistical Analysis 15 January 2018 Page 2

a groundwater monitoring system at the EAPPs that complies with 40 CFR 257.91 and performed baseline groundwater sampling events in accordance with 40 CFR 257.93. Geosyntec's statistical analyses were performed in accordance with the *Statistical Analysis Plan* dated 15 October 2017.

BACKGROUND

The groundwater monitoring system (GMS) was installed at the EAPPs in May 2016 and consists to two background monitoring wells, BBS-CCR-BW1 and BBS-CCR-BW2, and three downgradient monitoring wells, BBS-CCR-1, BBS-CCR-2, and BBS-CCR-3. TEC conducted eleven baseline groundwater sampling events from the GMS between June 2016 and October 2017 and analyzed the samples for Appendix III and Appendix IV constituents as required in 40 CFR 257.93. The inorganic data were reviewed based on the following: *CCR Groundwater Monitoring Program Plan*, Big Bend Power Station, Apollo Beach, Florida, September 2016, USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, August 2014 (OSWER 9355.0-131, EPA 540-R-013-001), as well as by the pertinent methods referenced by the data package and professional and technical judgment.

Geosyntec prepared a *Statistical Analysis Plan* to provide details on the selection of statistical methods in accordance with the provisions set forth in 40 CFR 257.93 "Groundwater sampling and analysis requirements." These statistical methods were used to establish background conditions and to evaluate groundwater monitoring data collected during detection monitoring (40 CFR 257.94) to evaluate if the CCR units at the BBS are adversely impacting groundwater quality.

METHODOLOGY AND APPROACH

The statistical approach used to evaluate groundwater monitoring data was selected from a suite of methods provided in 40 CFR 257.93(f) (1 through 5) and performed in accordance with a set of performance standards provided in 40 CFR 257.93(g), when applicable.

The approach included the following steps for each Appendix III constituent:

- 1. Graphical display of data and assessment of equal variance;
- 2. Evaluate trends and seasonality in the background dataset for each constituent.
- 3. Identify potential outliers;
- 4. Evaluate the population distribution of the background dataset for each constituent;
- 5. Calculate the frequency of non-detects (NDs), and summary statistics (e.g., minimum, maximum, and mean) of the background dataset for each constituent;

CCR Groundwater Statistical Analysis 15 January 2018 Page 3

- 6. Calculate appropriate upper limits (95%-95% upper tolerance limit [UTL] and a 95% upper prediction limit [UPL]); and
- 7. Compare upper limits to the most recent concentrations in the compliance (or downgradient) wells to determine if a statistically significant increase (SSI) above background has occurred.

Assumptions:

- The laboratory reporting limit was substituted for non-detects in all datasets.
- The laboratory reported value for estimated (J-flagged) concentrations were retained in all datasets.
- When a duplicate sample was collected at a background monitoring well, only the higher of the primary and duplicate sample concentrations were included in the aggregated dataset.

BACKGROUND GROUNDWATER QUALITY STATISTICS

The results of the Appendix III constituents (e.g., boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids) detected in groundwater samples from the two background monitoring wells were used to establish background concentrations for these constituents (**Table 1**). Based on professional judgment, the sulfate concentration of 41.7 milligrams per liter (mg/L) detected in BBS-CCR-BW2 on 7/20/17 was deemed an analytical error and was removed from the dataset.

Potential outliers:

- A sulfate concentration of 217 mg/L at BBS-CCR-BW1 was identified as a potential low concentration outlier but was retained in the dataset.
- The TDS concentration of 5,050 mg/L at BBS-CCR-BW1 was identified as a potential high concentration outlier but was retained in the dataset.

Increasing trends:

• An increasing pH trend is statistically present at BBS-CCR-BW2 based on the non-parametric Mann Kendall analysis.

Each of the Appendix III constituents exhibited a non-parametric distribution among the two background wells. The two background wells did show spatial variability for all the Appendix III constituents. An intra-well comparison is often used in these circumstances; however, this approach is not appropriate for the EAPPS since there is no groundwater data representative of pre-operational conditions (e.g., prior to

CCR Groundwater Statistical Analysis 15 January 2018 Page 4

EAPPS) and therefore no information if the background wells may have already been impacted prior to their construction. Consequently, the data from the two background monitoring wells were aggregated for each constituent to create a single pooled background dataset, consisting of 22 observations (11 events x 2 monitoring wells). Two non-parametric upper limits were calculated for each constituent: a 95%-95% upper tolerance limit (UTL) and a 95% upper prediction limit (UPL), both of which result in the maximum detected concentration among both background wells. However, the 95%-95% UTL could not achieve a confidence level above 67%, but the UPL did achieve 95% confidence. As such, the 95% UPL was used to evaluate SSI for each constituent.

DETECTION MONITORING

Groundwater samples were collected from the GMS in October 2017 to serve as the first detection monitoring event. The comparison of the detection monitoring results to the background values for the Appendix III constituents is shown in **Table 2**. A statistically significant increase (SSI) over background was observed for pH in two compliance monitoring wells (BBS-CCR-1 and BBS-CCR-2).

CONCLUSIONS

As specified in 40 CFR 257.94(3) (e), TEC will either provide (i) a demonstration that the SSI is due to sampling or analysis error, another source, or natural variability or (ii) commence with assessment monitoring within 90 days of this SSI (e.g., by 15 April 2018). The pH values of 6.83 and 6.87 identified as SSIs are within the natural range of groundwater at BBS based on historical values which have been measured across BBS. In the absence of SSIs for other Appendix III constituents, the SSIs for pH do not appear to be attributable to a release from the EAPPS, but are instead attributable to natural variability. Therefore, TEC will continue with detection monitoring as applicable for the EAPPS.

* * * * *

		Number of									Background C	oncentration
Parameter	Units	Number of Samples	Number of NDs	Percent NDs	Minimum Result	Average Result	Maximum Result	Potential Outlier?	Trend?	Distribution	95% UPL ²	Comment
Boron	mg/L	22	0	0	3.27	27.32	59.1	None	No	NP	59.1	Confidence for UTL = 67.6%
Calcium	mg/L	22	0	0	237	499	781	None	No	NP	781	Confidence for UTL = 67.6%
Chloride	mg/L	22	0	0	84.9	543.8	1140	None	No	NP	1140	Confidence for UTL = 67.6%
Fluoride	mg/L	22	1	5	<0.01	0.332	0.559	None	No	NP	0.559	Confidence for UTL = 67.6%
pH (field)	STD	22	0	0	6.38	6.55	6.70	None	Yes (BBS-CCR-BW2)	NP	(6.38, 6.70)	Confidence for UTL = 30.18%
Sulfate	mg/L	21 1	0	0	217	876	1550	217 (BBS-CCR-BW1)	No	NP	1547	Confidence for UTL = 65.9%
Total Dissolved Solids	mg/L	22	0	0	966	2709	5050	5050 (BBS-CCR-BW1)	No	NP	5050	Confidence for UTL = 67.6%

TABLE 1 - BACKGROUND STATISTICS, TEC BIG BEND STATION ECONOMIZER ASH AND PYRITE POND SYSTEM, APOLLO BEACH, FL

Notes:

< - concentration not detected at or above the adjusted reporting limit

mg/L - milligrams per litre

ND - non-detect

NP - non-parametric

STD - standard units

UTL - upper tolerance limit

UPL - upper prediction limit

1 - A concentration of 41.7 mg/L detected at BBS-CCR-BW2 on 7/20/17 was removed from the data set as a laboratory error based on professional judgment.

2 - The 95% UPL was calculated based on either a normal, lognormal, or Gamma distribution. If data did not follow a discernible distribution, then a non-parametric 95% UPL was calculated. A two-sided prediction interval was calculated for pH.

	Analytical Parameter	Boron, total	Calcium, total	Chloride, total	Fluoride, total	pH (field)	Sulfate, total	Total Dissolved Solids		
	Units	mg/L	mg/L	mg/L	mg/L	STD	mg/L	mg/L		
Backgrou	nd Concentration Value	59.1	781	1140	0.559	(6.38, 6.70)	1550	5050		
Well ID	Sample Collection Date		October 2017 Detection Monitoring Results							
BBS-CCR-1	10/13/2017	19.9	596	716	0.201	6.83	1230	3470		
BBS-CCR-2	BBS-CCR-2 10/13/2017		169	70.9	0.182	6.87	432	1030		
BBS-CCR-3	BBS-CCR-3 10/13/2017		190	153	0.333	6.44	503	1310		

TABLE 2 - DETECTION MONITORING RESULTS, TEC BIG BEND STATION ECONOMIZER ASH AND PYRITE POND SYSTEM, APOLLO BEACH, FL

Notes:

- Bold, highlighted text indicates statistically significant increase above background concentration values.

< - concentration not detected at or above the adjusted reporting limit.

mg/L - milligrams per liter

#

STD - standard units

APPENDIX B

EPA530-R-93-017 SUBPART E SECTION 5.10

Individual Well Comparisons

When only two wells (e.g., a single background and a single compliance point well) are being compared, owners or operators should not perform the parametric or nonparametric ANOVA. Instead. a parametric t-test, such as Cochran's Approximation to the Behrens-Fisher Students' t-test, or a nonparametric test should be performed. When a single compliance well group is being compared to background data and a nonparametric test is needed, the Wilcoxin Rank-Sum test should be performed. These tests are discussed in more detail in standard statistical references and in USEPA (1992b).

Intra-Well Comparisons

Intra-well comparisons, where data of one well are evaluated over time, are useful in evaluating trends in individual wells and for identifying seasonal effects in the data. The intra-well comparison methods do not compare background data to compliance data. Where some existing facilities may not have valid background data, however, intra-well comparisons may represent the only valid comparison available. In the absence of a true background well, several monitoring events may be required to determine trends and seasonal fluctuations in ground-water quality.

Control charts may be used for intra-well comparisons but are only appropriate for uncontaminated wells. If a well is intercepting a release, then it is already in an "out-of-control" state, which violates the principal assumption underlying control chart procedures. Time series analysis (i.e., plotting concentrations over time) is extremely useful for identifying trends in monitoring data. Such data may be adjusted for seasonal effects to aid in assessing the degree of change over time. Guidance for and limitations of intra-well comparison techniques are provided in USEPA (1989) and USEPA (1992b).

Treatment of Non-Detects

The treatment of data below the detection limit of the analytical method (non-detects) used depends on the number or percentage of non-detects and the statistical method employed. Guidance on how to treat nondetects is provided in USEPA (1992b).

5.10 DETECTION MONITORING PROGRAM 40 CFR §258.54

5.10.1 Statement of Regulation

(a) Detection monitoring is required at MSWLF units at all ground-water monitoring wells defined under §§258.51(a)(1) and (a)(2) of this part. At a minimum, a detection monitoring program must include the monitoring for the constituents listed in Appendix I of this part.

- 1) The Director of an approved State may delete any of the Appendix I monitoring parameters for a MSWLF unit if it can be shown that the removed constituents are not reasonably expected to be in or derived from the waste contained in the unit.
- 2) The Director of an approved State may establish an alternative list of inorganic indicator parameters for a MSWLF unit, in lieu of some or all of

the heavy metals (constituents 1-15 in Appendix I), if the alternative parameters provide a reliable indication of inorganic releases from the MSWLF unit to the ground water. determining alternative In the parameters. Director shall consider the following factors:

- (i) The types, quantities, and concentrations of constituents in wastes managed at the MSWLF unit;
- (ii) The mobility, stability, and persistence of waste constituents or their reaction products in the unsaturated zone beneath the MSWLF unit;
- (iii) The detectability of indicator parameters, waste constituents, and reaction products in the ground water; and
- (iv) The concentration or values and coefficients of variation of monitoring parameters or constituents in the background ground-water.

(b) The monitoring frequency for all constituents listed in Appendix I, or the alternative list approved in accordance with paragraph (a)(2), shall be at least semiannual during the active life of the facility (including closure) and the postclosure period. A minimum of four independent samples from each well (background and downgradient) must be collected and analyzed for the Appendix I constituents, or the alternative list approved in accordance with paragraph (a)(2), during the first semiannual sampling event. At least one sample from each well(background and downgradient)

must be collected and analyzed during subsequent semiannual sampling events. The Director of an approved State may specify an appropriate alternative frequency for repeated sampling and analysis for Appendix I constituents, or the alternative list approved in accordance with paragraph (a)(2), during the active life (including closure) and the post-closure care period. The alternative during frequency the active life (including closure) shall be no less than annual. The alternative frequency shall be based on consideration of the following factors:

- 1) Lithology of the aquifer and unsaturated zone;
- 2) Hydraulic conductivity of the aquifer and unsaturated zone;
- 3) Ground-water flow rates;
- 4) Minimum distance between upgradient edge of the MSWLF unit and downgradient monitoring well screen (minimum distance of travel); and
- 5) Resource value of the aquifer.

(c) If the owner or operator determines, pursuant to \$258.53(g) of this part, that there is a statistically significant increase over background for one or more of the constituents listed in Appendix I or the alternative list approved in accordance with paragraph (a)(2), at any monitoring well at the boundary specified under \$258.51(a)(2), the owner or operator:

(1) Must, within 14 days of this finding, place a notice in the operating record indicating which constituents have shown statistically significant changes from background levels, and notify the State Director that this notice was placed in the operating record; and

(2) Must establish an assessment monitoring program meeting the requirements of §258.55 of this part within 90 days, except as provided for in paragraph (3) below.

(3) The owner/operator may demonstrate that a source other than a MSWLF unit caused the contamination or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in ground-water quality. A report documenting this demonstration must be certified by a qualified groundwater scientist or approved by the Director of an approved State and be placed in the operating record. If a successful demonstration is made and documented, the owner or operator may detection monitoring continue as specified in this section. If after 90 days, a successful demonstration is not made, the owner or operator must initiate an assessment monitoring program as required in §258.55.

5.10.2 Applicability

Except for the small landfill exemption and the no migration demonstration, detection monitoring is required at existing MSWLF units, lateral expansions of units, and new MSWLF units. Monitoring must occur at least semiannually at both background wells and downgradient well locations. The Director of an approved State may specify sampling alternative frequency. an Monitoring parameters must include all Appendix Ι constituents unless an alternative

list has been established by the Director of an approved State.

During the first semiannual monitoring event, the owner or operator must collect at least four independent ground-water samples from each well and analyze the samples for all constituents in the Appendix I or alternative list. Each subsequent semiannual event must include, at a minimum, the collection and analysis of one sample from all wells. The monitoring requirement continues throughout the active life of the landfill and the post-closure care period.

If an owner or operator determines that a statistically significant increase over background has occurred for one or more Appendix I constituents (or constituents on an alternative list), a notice must be placed in the facility operating record (see Table 5-2). The owner or operator must notify the State Director within 14 days of the finding. Within 90 days, the owner or operator must establish an assessment monitoring program conforming to the requirements of §258.55.

If evidence exists that a statistically significant increase is due to factors unrelated to the unit, the owner or operator may make a demonstration to this effect to the Director of an approved State or place a certified demonstration in the operating record. The potential reasons for an apparent statistical increase may include:

- A contaminant source other than the landfill unit
- A natural variation in ground-water quality
- An analytical error

- A statistical error
- A sampling error.

The demonstration that one of these reasons is responsible for the statistically significant increase over background must be certified by a qualified ground-water scientist or approved by the Director of an approved State. If a successful demonstration is made and documented, the owner or operator may continue detection monitoring.

If a successful demonstration is not made within 90 days, the owner or operator must initiate an assessment monitoring program. A flow chart for a detection monitoring program in a State whose program has not been approved by EPA is provided in Figure 5-5.

5.10.3 Technical Considerations

If there is a statistically significant increase background over during detection monitoring for one or more constituents listed in Appendix I of Part 258 (or an alternative list of parameters in an approved State), the owner or operator is required to begin assessment monitoring. The requirement to conduct assessment monitoring will not change, even if the Director of an approved State allows the monitoring of geochemical parameters in lieu of some or all of the metals listed in Appendix I. If an owner or operator suspects that a statistically significant increase in a geochemical parameter is caused by natural variation in ground-water quality or a source other than a MSWLF unit. a demonstration to this effect must be documented in a report to avoid proceeding to assessment monitoring.

Independent Sampling for Background

The ground-water monitoring requirements specify that four independent samples be collected from each well to establish background during the first semiannual monitoring event. This is because almost all statistical procedures are based on the assumption that samples are independent of each other. In other words, independent samples more accurately reflect the true range of natural variability in the ground water, and statistical analyses based on independent samples are more accurate. Replicate samples, whether field replicates or lab splits, are not statistically independent measurements.

It may be necessary to gather the independent samples over a range of time sufficient to account for seasonal differences. If seasonal differences are not taken into account, the chance for false positives increases (monitoring results indicate a release, when a release has not occurred). The sampling interval chosen must ensure that sampling is being done on different volumes of ground water. To determine the appropriate interval between sample collection events that will ensure independence, the owner or operator can determine the site's effective porosity, hydraulic conductivity, and hydraulic gradient and use this information to calculate ground-water velocity (USEPA, 1989). Knowing the velocity of the ground water should enable an owner/operator to establish an interval that ensures the four samples are being collected from four different volumes of water. For additional information on establishing sampling interval, see Statistical Analysis of Groundwater Monitoring Data at RCRA

Figure 5-5. Detection Monitoring Program

Facilities - Interim Final Guidance, (USEPA, 1989).

Alternative List/Removal of Parameters

An alternative list of Appendix I constituents may be allowed by the Director of an approved State. The alternative list may use geochemical parameters, such as pH and specific conductance, in place of some or all of the metals (Parameters 1 through 15) in Appendix I. These alternative parameters must provide a reliable indication of inorganic releases from the MSWLF unit to ground water. The option of establishing an alternative list applies only to Parameters 1 through 15 of Appendix I. The list of ground-water monitoring parameters must include all of the volatile organic compounds (Appendix I, Parameters 16 through 62).

A potential problem in substituting geochemical parameters for metals on the alternative list is that many of the geochemical parameters are naturally occurring. However, these parameters have been used to indicate releases from MSWLF units. Using alternative geochemical parameters is reasonable in cases where natural background levels are not high enough to mask the detection of a release from a MSWLF unit. The decision to use alternative parameters also should consider natural spatial and temporal variability in the geochemical parameters.

The types, quantities, and concentrations of wastes managed at the MSWLF unit play an important role in determining whether removal of parameters from Appendix I is appropriate. If an owner or operator has definite knowledge of the nature of wastes accepted at the facility, then removal of constituents from Appendix I may be acceptable. Usually, a waste would have to be homogeneous to allow for this kind of determination. The owner or operator may submit a demonstration that documents the presence or absence of certain constituents in the waste. The owner or operator also would have to demonstrate that constituents proposed for deletion from Appendix I are not degradation or reaction products of constituents potentially present in the waste.

Alternative Frequency

In approved States, 40 CFR §258.54(b) allows the Director to specify an alternative frequency for ground-water monitoring. The alternative frequency is applicable during the active life, including the closure and the post-closure periods. The alternative frequency can be no less than annual.

The need to vary monitoring frequency must be evaluated on a site-specific basis. For example, for MSWLF units located in areas with low ground-water flow rates, it may be acceptable to monitor ground water less frequently. The sampling frequency chosen must be sufficient to protect human health and the environment. Depending on the ground-water flow rate and the resource value of the aquifer, less frequent monitoring may be allowable or more frequent monitoring may be necessary. An approved State may specify an alternative frequency for repeated sampling and analysis of Appendix I constituents based on the following factors:

1) Lithology of the aquifer and the unsaturated zone

- 2) Hydraulic conductivity of the aquifer and the unsaturated zone
- 3) Ground-water flow rates
- 4) Minimum distance between the upgradient edge of the MSWLF unit and the downgradient well screen
- 5) The resource value of the aquifer.

Approved States also can set alternative frequencies for monitoring during the postclosure care period based on the same factors.

Notification

The notification requirement under 40 CFR §258.54(c) requires an owner or operator to 1) place a notice in the operating record that indicates which constituents have shown statistically significant increases and 2) notify the State Director that the notice was placed in the operating record. The constituents can be from either Appendix I or from an alternative list.

Demonstrations of Other Reasons For Statistical Increase

An owner or operator is allowed 90 days to demonstrate that the statistically significant increase of a contaminant/constituent was caused by statistical, sampling, or analytical errors or by a source other than the landfill unit. The demonstration allowed in \$258.54(c)(3) may include:

1) A demonstration that the increase resulted from another contaminant source

- 2) A comprehensive audit of sampling, laboratory, and data evaluation procedures
- 3) Resampling and analysis to verify the presence and concentration of the constituents for which the increase was reported.

A demonstration that the increase in constituent concentration is the result of a source other than the MSWLF unit should document that:

- An alternative source exists.
- Hydraulic connection exists between the alternative source and the well with the significant increase.
- Constituent(s) (or precursor constituents) are present at the alternative source or along the flow path from the alternative source prior to possible release from the MSWLF unit.
- The relative concentration and distribution of constituents in the zone of contamination are more strongly linked to the alternative source than to the MSWLF unit when the fate and transport characteristics of the constituents are considered.
- The concentration observed in ground water could not have resulted from the MSWLF unit given the waste constituents and concentrations in the MSWLF unit leachate and wastes, and site hydrogeologic conditions.
- The data supporting conclusions regarding the alternative source are historically consistent with hydrogeologic

conditions and findings of the monitoring program.

The demonstration must be documented, certified by a qualified ground-water scientist, and placed in the operating record of the facility.

Demonstrations of Other Sources of Error

A successful demonstration that the statistically significant change is the result of an error in sampling, analysis, or data evaluation may include the following:

- Clear indication of a transcription or calculation error
- Clear indication of a systematic error in analysis or data reduction
- Resampling, analysis, and evaluation of results
- Corrective measures to prevent the recurrence of the error and incorporation of these measures into the ground-water monitoring program.

If resampling is necessary, the sample(s) taken must be independent of the previous sample. More than one sample may be required to substantiate the contention that the original sample was not representative of the ground-water quality in the affected well(s).

5.11 ASSESSMENT MONITORING PROGRAM 40 CFR §258.55(a)-(f)

5.11.1 Statement of Regulation

(a) Assessment monitoring is required whenever a statistically significant increase over background has been detected for one or more of the constituents listed in Appendix I or in the alternate list approved in accordance with § 258.54(a)(2).

(b) Within 90 days of triggering an assessment monitoring program, and annually thereafter, the owner or operator must sample and analyze the ground water for all constituents identified in Appendix II of this part. A minimum of one sample from each downgradient well must be collected and analyzed during each sampling event. For any new constituent detected in the downgradient wells as a result of the complete Appendix II analysis, a minimum of four independent samples from each well (background and downgradient) must be collected and analyzed to establish background for the new constituents. The Director of an approved State may specify an appropriate subset of wells to be sampled and analyzed for Appendix Π constituents during assessment monitoring. The Director of an approved State may delete any of the Appendix II monitoring parameters for a MSWLF unit if it can be shown that the removed constituents are not reasonably expected to be contained in or derived from the waste contained in the unit.

APPENDIX C

GROUNDWATER SAMPLING AND CALIBRATION FORMS - OCTOBER 13, 2017

FACILITY NAME:		Big Be	nd		SITE LOCATION: Apollo Beach, FL.								
WELL NO:	В	BS-CCR-1			SAMPLE ID:	L17J1	15-01 A		DATE:	10/13/17			
					PURGI	NG DATA							
WELL DIAMETER (inches	5)	TUBING DIAMETER (incl	nes) 1/4	WELL SCR DEPTH 12.32	EEN INTERV feet to	AL (NGVD) 22.32 (feet)	STATIC DEF	PTH (feet): 7.32	PURGE PUMP TY OR BAILER:	^{PE} PP			
WELL VOLUME PURG	E:	1 WELL VOLU	ME = (TOTAL WE	LL DEPTH - STATIC DE	EPTH TO WATE	R) X WELL CAPACI	TY		•				
. ,			= (feet -		feet) x		gallons/foot	=	gallons		
EQUIPMENT VOLU (only fillout if applic	UME PURGE: able)	1 EQU	IPMENT VOL	. = PUMP VOLUM	E + (TUBING	CAPACITY X T	UBING LENG	STH) + FLOW CE	LL VOLUME				
			=(0	gallons + (0.0026 gallo	ns/foot X	23.3 feet) +	0.06	gallons =	0.12 gallons		
INITIAL PUMP OR DEPTH IN WELL (f	TUBING eet): 17.32	2	FINAL PUMP DEPTH IN W	ELL (feet): 17	.32	PURGING INITIATED AT:	11:17	ENDED AT:	11:32	PURGED (gall	^{//E} ^{ons):} 1.51		
TIME	VOLUME PURGED (GALLONS)	VOLUME PURGED (GALLONS)	PURGE RATE (GPM)	DEPTH TO WATER (FEET)	pH (standard units)	TEMP. (°C)	COND. (µmhos/cm OR µS/cm)	DISSOLVED OXYGEN (circlemg/lor % saturation)	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)		
11:28	1.10	1.10	0.10	7.41	6.83	26.47	4268	0.20	1.86	Clear	None		
11:30	0.21	1.31	0.11	7.40	6.83	26.53	4261	0.24	0.97	Clear	None		
11:32	0.20	1.51	0.10	7.41	6.83	26.57	4258	0.24	0.89	Clear	None		
WELL CAPACITY (Ga	allons Per Foot):	0.75" = 0.02;	1" = 0.04; 1	.25" = 0.06; 2" =	0.16; 3" =	0.37; 4" = 0.6	65; 5" =	1.02; 6" = 1.47;	12 " = 5.88				
TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0006; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.10; 5/8" = 0.016 Sample Inscience Sample Insci													
SAMPLED BY (PRINT) / AFFILIATION: SAMPLER (S) SIGNATURES: SAMPLING SAMPLING SAMPLING													
	RAE	3	TECO					INITIATED AT:	11:32	ENDED AT: 1	1:50		
PUMP OR TUBING DEPTH IN WELL (f	eet): 17.3	3		SAMPLE PUMP FLOW RATE (mL	per minute):	3	883	TUBING MATERIAL CODE	E PE/	/S			
FIELD DECONTAN	INATION: Y	N 🔽		FIELD-FILTERED Filtration Equipme	: nt Tyμε	N 🗹 🛛 FILTE	ER SIZE:	μm	DUPLICATE:	Y 🔲 N 🗹	1		
	SAMPLE CON SPECIFICA	ITAINER TION			SAMPLE PRE	SERVATION		INTE	NDED	SAMPLING			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE		AL VOL.	FINAL pH	ANALYSI MET	S AND/OR HOD	EQU	IIPMENT CODE		
					NODED II		P						
@Ino-500	1	PE	500ml	NONE	N	IONE	N/A	Inorg	anics		PP		
@Met-250	2	PE	250ml	HNO3		1ml	<2	Ме	tals		PP		
@Rad-1L	2	PE	1L	HNO3		5ml	<2	Radiol	ogicals		PP		
REMARKS [.]		I	l	1	l		I			I			
(1) Sample bo	ttles pre-pres	served at labo	oratory prio	or to sample co	llection.								
MATERIAL CODES	AG = Amber C	Blass; CG = C	lear Glass;	PE = Polyethylene;	PP = Poly	propylene; S =	Silicone; 1	r = Teflon; o = Oth	ner (Specify)				
SAMPLING/PURGIN EQUIPMENT CODE	IG / S: I	APP = After Perists RFPP = Reverse F	altic Pump; B low Peristaltic F	= Bailer; BP = Blad Pump; SM = Straw	der Pump; ES Method (tubing	SP = Electric Submi g Gravity Drain); \	irsable Pump; /T = Vacuum 1	PP = Peristaltic Pur Trap; O = Other (Spe	np ecify)				
NOTES:	1. The above of	do not constitu	te all of the in	nformation requi	erd by Chap	ter 62-160, F.A.	с.						

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212. SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: $\pm 5\%$ Dissolved Oxygen: all readings $\leq 20\%$ saturation (see Table FS 2200-2);

SITE NAME:		Big Be	end			SITE LOCATION:		Beach, FL.					
WELL NO:	В	BS-CCR-2	2		SAMPLE ID:	L17J1	15-02 A	-	DATE: 10/13/17				
					PURGI	NG DATA							
WELL DIAMETER (inches	.)	TUBING	(hes) 1/4	WELL SCREEN IN DEPTH 11 84	NTERVAL feet to	21 84 (feet)	STATIC DEPTH	t): 6.88	PURGE PUMP TY	/PE DD			
	URGE:	1 WELL VO	LUME = (TOT	AL WELL DEPTH -	STATIC DEF	PTH TO WATER)	X WELL CA		OR BAILER.				
(only fillout if applic	able)		= (feet -	- ,	feet) x		gallons/foot	=	aallons		
EQUIPMENT VOLU	JME PURGE:	1 EQU	JIPMENT VOL	. = PUMP VOLUM	E + (TUBING	CAPACITY X T	UBING LENG	TH) + FLOW CE	LL VOLUME		3		
(only fillout if applic	able)		=(0	gallons + (0.0026 gallo	ons/foot X	22.84 feet)+ 0.06	gallons =	0.12 gallons		
INITIAL PUMP OR							40.40		11.00	TOTAL VOLUN			
	16.84	CUMUL.		DEPTH	.84		10:48 COND	DISSOLVED	11:00	I ONGED (gaile	1.20		
TIME	PURGED	PURGED	RATE	TO WATER	(standard	TEMP. (°C)	(µmhos/cm	OXYGEN (circle mg/l) r	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)		
	(GALLONS)	(GALLONS)	(GPM)	(FEET)	units)		OR µS/cm)	% saturation)					
10:56	0.80	0.80	0.10	6.94	6.87	26.44	1348	0.19	3.18	Lt. Yellow	None		
10:58	0.20	1.00	0.10	6.94	6.86	26.45	1350	0.16	2.80	Lt. Yellow	None		
11:00	0.20	1.20	0.10	6.95	6.87	26.46	1350	0.20	3.03	Lt. Yellow	None		
											-		
											-		
											-		
WELL CAPACITY (Ga	allons Per Foot): (75" = 0.02 [.]	1" = 0.04:	1 25 " = 0.06 [.] 2 " =	0.16: 3" =	0.37: 4" = 0.6	5: 5 " = 1	02: 6" = 1.47:	12 " = 5.88				
TUBING INSIDE DIA.	CAPACITY (Gal./Ft.	.): 1/8 " = 0.00006;	3/16" = 0.0014;	1/4" = 0.0026;	5/16" = 0.004	; 3/8 " = 0.006;	1/2 " = 0.0	10; 5/8 " = 0	0.016				
					SAMPL	ING DATA							
SAMPLED BY (PR		UN: 1	TECO	SAMPLER (S) SIC	SNATURES:			INITIATED AT:	11.00	ENDED AT:	11.10		
PUMP OR TUBING		,	TECO	SAMPLE PUMP				TUBING	11.00		11.10		
DEPTH IN WELL (f	eet): 16.8			FLOW RATE (mL	. per minute):			MATERIAL CODE	: PE/	<u>s</u>			
FIELD DECONTAN				Filtration Equipme	nt Type		ER SIZE.	μιι	DUPLICATE:	Y N M			
	SAMPLE CON		1		SAMPLE PRE	ESERVATION		INTE ANALYSI	NDED S AND/OR	SAN EQU	IPLING IPMENT		
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOT ADDED II	FAL VOL. N FIELD (ml) ₍₁₎	FINAL pH	MET	HOD	C	ODE		
@Ino-500	1	PE	500ml	NONE	N	IONE	N/A	Inorg	anics		PP		
@Met-250	2	PE	250ml	HNO3		1ml	<2	Ме	tals		PP		
@Rad-1L	2	PE	1L	HNO3		5ml	<2	Radiol	ogicals		PP		
REMARKS:													
(1) Sample bo	ttles pre-pres	erved at lab	oratory pric	or to sample co	llection.								
	S: AG = Ambe	er Glass; CG	= Clear Glass	; PE = Polyeth	ylene; PF	P = Polypropylene	; S = Silico	PP - Peristaltia Pro-	O= Other (Spec	cify)			
EQUIPMENT CODE	S: F	RFPP = Reverse I	Flow Peristaltic	Pump; SM = Straw	Method (tubing	g Gravity Drain); N	/T = Vacuum T	rap; 0 = Other (Spe	ecify)				
NOTES:	1. The above of 2. STABILIZATIO	lo not constitu N CRITERIA FOF	Ite all of the in R RANGE OF V	nformation requi	erd by Chap THREE CONS	oter 62-160, F.A. SECUTIVE READIN	C. IGS (SEE FS 2	212. SECTION 3)					

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2);

SITE NAME:		Big Be	end		SITE LOCATION: Apollo Beach, FL.								
WELL NO:	В	BS-CCR-3			SAMPLE ID: L17J115-03 A					10/13/17			
					PURGI	NG DATA							
WELL DIAMETER (inches	5)	TUBING DIAMETER (inc	hes) 1/4	WELL SCREEN IN DEPTH 13.23	NTERVAL feet to	23.23 (feet)	STATIC DEF	PTH (feet): 6.52	PURGE PUMP T' OR BAILER:	YPE PP			
	URGE:	1 WELL VO	LUME = (TOT	AL WELL DEPTH -	STATIC DEP	TH TO WATER)	X WELL CA	APACITY					
(only fillout if applic	able)		= (feet -		feet) x		gallons/foot = gallons				
EQUIPMENT VOL (only fillout if applic	UME PURGE: able)	1 EQL	JIPMENT VOL	. = PUMP VOLUM	E + (TUBING	CAPACITY X T	UBING LENG	GTH) + FLOW CEI	LL VOLUME				
			=(0	gallons + (0.0026 gallo	ns/foot X	24.23 fee	et)+ 0.06	gallons =	0.12 gallons		
INITIAL PUMP OR DEPTH IN WELL (1	TUBING feet): 18.23	3	FINAL PUMP DEPTH IN W	OR TUBING ELL (feet): 18	.23	PURGING INITIATED AT:	10:13	PURGING ENDED AT:	10:26	TOTAL VOLU	ME ons): 0.63		
TIME	VOLUME PURGED (GALLONS)	CUMUL. VOLUME PURGED (GALLONS)	PURGE RATE (GPM)	DEPTH TO WATER (FEET)	pH (standard units)	TEMP. (ºC)	COND. (µmhos/cm OR µS/cm)	DISSOLVED OXYGEN (circlemg/l)or % saturation)	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)		
10:22	0.43	0.43	0.05	6.72	6.47	27.31	1785	0.36	1.59	Yellow	Mild		
10:24	0.10	0.53	0.05	6.72	6.45	27.20	1763	0.50	1.13	Yellow	Mild		
10:26	0.10	0.63	0.05	6.71	6.44	27.18	1747	0.37	2.39	Yellow	Mild		
TUBING INSIDE DIA.	allons Per Foot): CAPACITY (Gal./Fi	0.75" = 0.02; t.): 1/8" = 0.00006;	1" = 0.04; 3/16" = 0.0014;	1.25 " = 0.06; 2 " = 1/4 " = 0.0026;	0.16; 3" = 5/16" = 0.004;	0.37; 4" = 0.6 3/8" = 0.006;	5; 5" = 1/2" = 0.0	1.02; 6" = 1.47; 010; 5/8" = 0	12" = 5.88).016				
r				1	SAMPL	ING DATA							
SAMPLED BY (PR	INT) / AFFILIATI RAE	ON: B	TECO	SAMPLER (S) SIG	SNATURES:			INITIATED AT:	:26	ENDED AT:	0:42		
PUMP OR TUBING	Greet): 18.2	>		SAMPLE PUMP FLOW RATE (mL	per minute):	1	87	TUBING MATERIAL CODE	: PF	/S			
FIELD DECONTAN	/INATION:	Y 🗖 N 🗖		FIELD-FILTERED			R SIZE:	μm		<u>у П N Р</u>			
	SAMPLE CON	NTAINER			SAMPLE PRE	SERVATION		INTE					
	SPECIFIC/ #	ATION MATERIAL	VOLUME	PRESERVATIVE	тот	AL VOL.	FINAL	ANALYSI	S AND/OR	EQU	JIPMENT		
SAMPLE ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDED IN	l FIELD (ml) ₍₁₎	рН	INIE I	HOD	· · · · ·	JODE		
@Ino-500	1	PE	500ml	NONE	N	ONE	N/A	Inorg	anics		РР		
@14-4.050	0	DE	0501	11000		1	0	Ma	tolo		חח		
@Red 1	2	PE	250m			5ml	<2	Padial					
@Rau-IL	2	FE		HINO3		JIII	<2	Raului	oyicais		ГГ		
REMARKS:	1	I	1	1	1		1	I		1			
(1) Sample bo	ttles pre-pres	served at lab	oratory pric	or to sample co	llection.								
MATERIAL CODE	S: AG = Ambe	er Glass; CG	= Clear Glass	; PE = Polyeth	ylene; PP	= Polypropylene	; S = Silic	one; T = Teflon;	O= Other (Spe	ecify)			
EQUIPMENT CODE	S:	RFPP = Reverse F	low Peristaltic	e baller, BP = Blad Pump; SM = Straw	Method (tubing	Gravity Drain);	/T = Vacuum 1	FF = Penstanc Pum Trap; 0 = Other (Spe	ecify)				

NOTES: 1. The above do not constitute all of the information requierd by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212. SECTION 3)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2);

SITE NAME:		Big Be	end			SITE LOCATION:		Apollo	Beach, FL.				
WELL NO:	BBS	S-CCR-BW	/-1		SAMPLE ID:	L17J	115-04 A		DATE: 10/13/17				
					PURGI	NG DATA							
WELL DIAMETER (inche	s)	TUBING DIAMETER (inc	hes) 1/4	WELL SCREEN II DEPTH 34 30	NTERVAL feet to	44 30 (feet)	STATIC DEP	PTH (feet): 29.60	PURGE PUMP TY	^{/PE} ESP			
WELL VOLUME P	URGE:	1 WELL VO	LUME = (TOT	AL WELL DEPTH -	STATIC DEF	TH TO WATER)	X WELL CA	PACITY	OTTERTEET	201			
(only fillout if applic	cable)		= (feet -		feet) x		gallons/foo	vt =	gallons		
EQUIPMENT VOL	UME PURGE:	1 EQU	JIPMENT VOL	. = PUMP VOLUM	E + (TUBING	CAPACITY X 1	UBING LENG	TH) + FLOW CE	LL VOLUME				
(only mouth applic			=(0	gallons + (0.0026 gallo	ons/foot X	100 fee	et)+ 0.06	gallons =	0.32 gallons		
INITIAL PUMP OR DEPTH IN WELL (TUBING feet): 39.30		FINAL PUMP DEPTH IN W	OR TUBING ELL (feet): 30	30	PURGING INITIATED AT:	9.49	PURGING ENDED AT:	10.01	TOTAL VOLUN PURGED (gallo	IE ons): 8.23		
TIME	VOLUME PURGED (GALLONS)	VOLUME PURGED (GALLONS)	PURGE RATE (GPM)	DEPTH TO WATER (EEET)	pH (standard units)	TEMP. (°C)	COND. (µmhos/cm OR µS/cm)	DISSOLVED OXYGEN (circle(ng/l))r % saturation)	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)		
9:57	5.49	5.49	0.69	30.43	6.55	27.81	4384	0.87	7.30	Clear	None		
9:59	1.37	6.86	0.69	30.42	6.55	27.81	4499	0.57	4.40	Clear	None		
10:01	1.37	8.23	0.69	30.41	6.55	27.86	4570	0.40	2.51	Clear	None		
WELL CAPACITY (Gallons Per Foot):	0.75" = 0.02; /Et): 1/8" = 0.00	1 " = 0.0	04; 1.25" = 0.	06; 2" = 0	0.16; 3" = 0.	37; 4 "	= 0.65; 5" =	= 1.02; 6" = 1	.47; 12" =	5.88		
		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		- 0.0014, 114 -	SAMPL	ING DATA	0.00	0, 172 - 0.0	10, 0/0	- 0.010			
SAMPLED BY (PR	RINT) / AFFILIATIO	SN:		SAMPLER (S) SIG	GNATURES:			SAMPLING INITIATED AT:		SAMPLING ENDED AT:			
	RAB	5	TECO					10 TURING	:01	10	0:04		
DEPTH IN WELL (feet): 39.3			FLOW RATE (mL	. per minute):	20	600	MATERIAL CODE	e PE	<u> </u>			
FIELD DECONTAN	MINATION:	Y 🗋 N 🗹		FIELD-FILTERED Filtration Equipme	: Y 🗖 ent Type.	N 🗹 🛛 FILTI	ER SIZE:	μm	DUPLICATE:	Y 🚺 N 🗹			
	SAMPLE CON SPECIFICA	ITAINER TION			SAMPLE PRE	SERVATION				SAN			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOT ADDED IN	TAL VOL. N FIELD (ml) (1)	FINAL pH	MET	HOD	C	ODE		
@Ino-500	1	PE	500ml	NONE	N	IONE	N/A	Inorg	janics	E	SP		
@Met-250	2	PE	250ml	HNO3		1ml	<2	Me	tals	E	SP		
@Rad-1L	2	PE	1L	HNO3		5ml	<2	Radio	ogicals	E	SP		
										ļ			
REMARKS: (1) Sample bo	ottles pre-pres	erved at lab	oratorv pric	or to sample co	ollection.								
MATERIAL CODE	S: AG = Ambe	r Glass; CG	= Clear Glass	; PE = Polyeth	ylene; PF	e = Polypropylene	e; S = Silic	one; T = Teflon;	o= Other (Spe	cify)			
SAMPLING/PURGI	NG A	APP = After Perist	altic Pump; B	= Bailer; BP = Blac Pump: SM = Straw	Ider Pump; ES	P = Electric Subm	irsable Pump; VT = Vacuum T	PP = Peristaltic Pun	np acify)				
NOTES:	1. The above d	lo not constitu	te all of the in	nformation requi	erd by Chap	ter 62-160, F.A.	C.		;;				
	2. STABILIZATIO	N CRITERIA FOR	RANGE OF V	ARIATION OF LAST	THREE CONS	ECUTIVE READIN	NGS (SEE FS 2	212. SECTION 3)					

pH: ± 0.2 units Temperature: ± 0.2 ℃ Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2);

SITE NAME:		Big Be	end			SITE LOCATION:		Apollo	Beach, FL.				
WELL NO:	BBS	S-CCR-BW	-2		SAMPLE ID:	L17J ²	115-05 A	-	DATE: 10/13/17				
					PURGI	NG DATA							
WELL DIAMETER (inches	s)	TUBING DIAMETER (inc	hes) 1/4	WELL SCREEN IN DEPTH 13.64	NTERVAL feet to	23.34 (feet)	STATIC DEP	PTH (feet): 7.38	PURGE PUMP TY OR BAILER:	^{PE} PP			
WELL VOLUME P	URGE:	1 WELL VO	LUME = (TOT)	AL WELL DEPTH -	STATIC DEF	PTH TO WATER)	X WELL CA	PACITY					
(only fillout if applic	able)		= (feet -		feet) x		gallons/foo	t =	gallons		
EQUIPMENT VOL (only fillout if applic	UME PURGE: able)	1 EQL	JIPMENT VOL	. = PUMP VOLUM	E + (TUBING	CAPACITY X T	UBING LENG	TH) + FLOW CE	LL VOLUME				
			=(0	gallons + (0.0026 gallo	ons/foot X	24.64 fee	et)+ 0.06	gallons =	0.12 gallons		
INITIAL PUMP OR DEPTH IN WELL (TUBING ^{feet):} 18.49)	FINAL PUMP DEPTH IN W	OR TUBING ELL (feet): 18	.49	PURGING INITIATED AT:	9:15	PURGING ENDED AT:	9:32	TOTAL VOLUN PURGED (gallo	1E ons): 2.27		
TIME	VOLUME PURGED (GALLONS)	VOLUME PURGED (GALLONS)	PURGE RATE (GPM)	DEPTH TO WATER (FEET)	pH (standard units)	TEMP. (ºC)	COND. (µmhos/cm OR µS/cm)	DISSOLVED OXYGEN (circle(mg/) or % saturation)	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)		
9:28	1.75	1.75	0.13	7.61	6.68	27.92	1706	0.39	4.98	Lt. Yellow	None		
9:30	0.26	2.01	0.13	7.62	6.69	27.95	1702	0.31	6.12	Lt. Yellow	None		
9:32	0.26	2.27	0.13	7.62	6.70	27.98	1699	0.28	3.96	Lt. Yellow	None		
WELL CAPACITY (Gallons Per Foot):	0.75" = 0.02;	1" = 0.0	04; 1.25 " = 0.0	06; 2" =	0.16; 3" = 0.	37; 4 "	= 0.65; 5" =	= 1.02; 6" = 1	.47; 12" =	- 5.88		
TUBING INSIDE DI	A. CAPACITY (Gal	<u>./Ft.): 1/8" = 0.00</u>	<u>006; 3/16"</u> =	<u>= 0.0014; 1/4" =</u>	0.0026; SAMPL	<u>5/16" = 0.004;</u> ING DATA	3/8 " = 0.00	<u>6; 1/2" = 0.0</u>	10; 5/8 '	' = 0.016			
SAMPLED BY (PR	RINT) / AFFILIATIO	ON:		SAMPLER (S) SIC	GNATURES:			SAMPLING INITIATED AT:		SAMPLING ENDED AT:			
	RAB	3	TECO					9:	32	ę	9:40		
DEPTH IN WELL (feet): 18.5	5		FLOW RATE (mL	. per minute):		503	MATERIAL CODE	: PE/	/S			
FIELD DECONTAN	MINATION:	Y 🔲 N 🗹		FIELD-FILTERED Filtration Equipme	nt Type		ER SIZE:	μm	DUPLICATE:	Y 🗌 N 🖪	/		
	SAMPLE CON SPECIFICA	ITAINER TION			SAMPLE PRE	ESERVATION				SAMPLING			
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	TOT ADDED II	FAL VOL. N FIELD (ml) (1)	FINAL pH	MET	HOD	C	ODE		
@Ino-500	1	PE	500ml	NONE	N	IONE	N/A	Inorg	janics		PP		
@Met-250	2	PE	250ml	HNO3		1ml	<2	Me	tals		PP		
@Rad-1L	2	PE	1L	HNO3		5ml	<2	Radiol	ogicals		PP		
REMARKS:	I	1	1	1	1		I	1		1			
(1) Sample bo	ttles pre-pres	erved at lab	oratory prio	or to sample co	ollection.								
MATERIAL CODE	S: AG = Ambe	er Glass; CG	= Clear Glass	PE = Polyeth	ylene; PF	P = Polypropylene	e; S = Silic	one; T = Teflon; PP = Poristaltia Dura	O= Other (Spe	cify)			
EQUIPMENT CODE	S: F	RFPP = Reverse F	low Peristaltic F	Pump; SM = Straw	Method (tubing	g Gravity Drain);	VT = Vacuum 1	rap; 0 = Other (Spe	ecify)				
NOTES:	1. The above d 2. STABILIZATIO	IO NOT CONSTITU N CRITERIA FOR	te all of the in RANGE OF VA	ntormation requi	erd by Chap THREE CONS	oter 62-160, F.A. Secutive readin	.C. NGS (SEE FS 2	212. SECTION 3)					

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2);

Site:	ite: Big Bend Date:				File Name:	101317_	Wells_RAB	Weather:	Partly Clou	ıdy & Warm	Sampler(s) / Initials	RAB /TEC	O Initials	RAS
LIMS #	Loction Code	Time	FE ²	pH (SU)	Temp °C	Cond(uMHOS)	DO Mg/L	Turbidity(NTU)	Redox (mv)	Sulfite (mg/L)	Color	Odor	N	GVD
			mg/l	PH	TEMP-C	COND-F	DO	TURB-N-F	REDOX	SO3-TR	\$COLOR-W	\$ODOR-W	Time	LEVEL
L17J115-01 A	BBS-CCR-1	11:50		6.83	26.57	4258	0.24	0.89	-83.3		Clear	None		
L17J115-02 A	BBS-CCR-2	11:10		6.87	26.46	1350	0.20	3.03	-188.5		Lt. Yellow	None		
LIMS #	250ml Cvan (3)	1L Inora (1)	500ml Inorg (2)	250ml Inora (3)	1L Mtls (1)	250ml Mtls (3)	1L Rads (1)	500ml Sulfide (2)	500ml Mtls (2)	250ml Nuts (3)	40ml Vial (6)	500 ml Nuts (2)	1L Rads Diss. (1)	Total Containers
L17J115-01 A			1			⊻ 2	⊻ 2							4.0
L17J115-02 A			1			✓ 2	✓ 2							10
(1) 1L plastic (PP)		(2) 500ml plastic	c (PP)	(3) 250ml plastic	(PP)	(4) 100ml coliform bo	ottle	(5) 1L amber glass (AG)	(6) 40ml VOA vial	(CG)		Samples On Ice	Sample Reciept
ESS	0107301Y	ESS	0218201Y	ESS	0307301Y	ESS		ESS	,	ESS	()		Yes No	Time 14.18
	Preservation			Bros ID		Preservation			Bros ID		Preservation	<u>.</u>	Pros ID	Tomp 14 C
11 bottles (rads): 5 ml H	INO3 to pH <2			1 012558	250ml bottles (put	ts): 1 ml H2SO4 to nH	1-2			500 ml bottles(Sulfi	de) 2ml NAOH/Zinc	Acet to pH >12		Temp 1.4 C
500 ml bottles (metals):	2 ml HNO3 to nH <2	1		1	40 ml Vial (TOC):	0.5 ml H2SO4 to pH	-2		ti – –	250 ml bottles (Cura	n) 1 a NAOH to $nH >$			
250 ml bottles (metals).				L 012559	40 mi viai (TOC).	0.5 min H2304 to ph	<			A shocked bey inc		= <u> </u>		
250 mil bottles (metal).		DufferID	Duffer Malue	L 012338	TE DOILles (diss. 12	ads). Intered with 0.45	Time	001/	T	A checked box inc		Temp °C		The e Male e and
pH Meter Calibration	MDM00	Buffer ID	Buffer Value		Time	7.00	Time		Time	Redox Cal	Time		Reading mv	Theo Value mv
Meter ID:	MPM08	L 019949D	/	7.01	7:02	7.03	7:06	7.11	14:29	Meter ID:	7:10	21.5	236.0	236.2
FDEP FT 1100		L 019303D	10	10.05	7:02					IVIPIVIU8	14:33	21.1	233.5	230.2
Onits: 50	111.		4	4.00	7.02	101/	T ion a	001/				-		
Conductivity meter Ca	MDM00	Standard ID		Cai	7:4.4	ICV	Time		Time		-	Tomp ⁰ C		T I 1/1 0
Meter ID:	IVIPIVIUO	018803E	1000	1000	7.14	0000	7.40	0704	14.04	DO Meter Cal	Time		Reading mg/i	Theo Value mg/I
FDEP FT 1200, Units: u	MHOS	L 019100B	10000			9830	7:18	9791	14:01	Meter ID:	6:54	21.4	8.90	8.863
Turbidity Meter Calibra	ation	Standard ID	Std Value	Acceptab	ility Range	ICV	Time	CCV	Time	MPM08	14:42	20.8	8.97	8.950
Meter ID:	1M07	L 019883	5.56	5.00	6.12	5.60	6:43	5.61	13:59	Barom. Pres				
FDEP FT 1600, Units: N	ITU	<u> </u>								760				
Sulfite Info (QC Check) (EPA 377.1)		QC Result mg/l	Time	Titrator ID	Na Thio ID	DO 3 Pillow ID	Starch Ind. ID	Iodate/Iodide ID	Therm ID	рН	Conduct.(%)	DO (mg/l)	Redox (mv)
QC Std: 5ml (NaThio)/50	00ml DI=10mg/L					L	L	L	L	MPM08	0.2	5	0.3	10
Purging Information		Well Capacities	s (gallons/ ft): 2"	= 0.16 4" = 0.65		Tubing Inside Diam	. Capacities Gallons/ft)	: 1/4" =0.0026, 3/8" =	0.006				<u> </u>	
Well #	Diam/ Comp	Screen Interval (ft)	Intake Depth (ft)	Well Depth (ft)	- Depth to Water (ft)	= Column X (ft)	Well Capacity (gal) =	1 Well Volume (gal)	Capacity X (gal/ft.)	Tubing Length (ft)	+ Volume (gal) +	Cell Volume (gal) =	1 Eqpt. Volume (gal)	
BBS-CCR-1	2	10	17.32	22.32	7.32	15.00	0.16	2.40	0.0026	23.3	0	0.06	0.12	
Purge Meth:	Time	Rate (ml/min)	Volume (gal)	Total Vol. (gal)	Water Depth (ft)	pH (SU)	Temp °C	Cond (uMHOS)	DO (mg/L)	Turbidity (NTU)	Purge Criteria	Status	Equipment ID	Egpt. Table
1A	11:28	380	1.10	1.10	7.41	6.83	26.47	4268	0.20	1.86	ph:+/- 0.2	STABLE	Level Meter:	WLM08
Purge Start:	11:30	390	0.21	1.31	7.40	6.83	26.53	4261	0.24	0.97	TempºC+/- 0.2	STABLE	Pump:	PP
11:17	11:32	380	0.20	1.51	7.41	6.83	26.57	4258	0.24	0.89	Cond % +/- 5	STABLE	Tubing:	PE/S
Purge End:											DO % Sat.< 20	STABLE	Dedicated	Yes
11:32											Turb. NTU < 20	STABLE	Tubing?	No No
Purge Complete A	t 11:18	Gallons to P	urge 0.12	Stablility	Values =	6.83	26.57	4258	0.24	0.89				
Woll #	Diam/ Comp	Screen	Intake	Well Depth (ft)	Depth to Water : (ft)	Water = Column x	Well Capacity (gal) =	1 Well Volume (gal)	Capacity X	Tubing Length) -	Pump Volume + (gal)	Cell Volume (gal) =	1 Eqpt. Volume (gal)	
BBS-CCR-2	2	10	16.84	21.84	6.88	14 96	0.16	2.39	0.0026	22.84	0	0.06	0.12	
Burgo Moth:	Time	Data (ml/min)		Tatal Val. (sal)	Water Depth (#)	nH (SU)	Tomp °C	Cond (WMHOR)	0.0020	Turbidity (NTU)	Durne Criterie	Status	Equipment ID	East Table
	10,56					6 97		1249	0.10	2.19	Purge Criteria	STARLE	Equipment ID	
	10.50	300	0.00	1.00	6.04	0.07	20.44	1340	0.19	3.10	0.2	STABLE		
Furge Start:	10:00	380	0.20	1.00	0.94	0.00	20.40	1300	0.16	2.80	Temp ^o C+/- 0.2	STABLE	r unip. Tubinar	
10:48	11:00	380	0.20	1.20	6.95	6.87	26.46	1350	0.20	3.03		STABLE	i ubing:	
Purge End:											DU % Sat.< 20	STABLE	Dedicated	
11:00	40.40	Callerate				0.5-	00.15	10-0	0.77	0.55	iurb. NIU < 20	STABLE	I ubing?	L NO
Purge Complete A	a 10:49	Gallons to P	rurge 0.12	Stablility	Values =	6.87	26.46	1350	0.20	3.03				
Comments:												Total Time	Total	Miles

Site	Bia Be	nd		Date [.]	10/13/17	File Name	101317	Wells RAB	Weather:	Partly Clou	dv & Warm	Sampler(s) / Initials	RAB /TEC	\cap Initials	
	Loction Code	Tin	no	EF ²	nH (SU)	Temp °C	Cond(uMHOS)	DO Ma/l	Turbidity(NTU)	Bodox (my)	Sulfite (mg/l.)	Color	Odor	N	GVD
LINIG #	Locilon Code		ne	ma/l	рн (30)	TEMP-C				REDOX (IIIV)	Solutione (Ing/L)		SODOR-W	Time	
1 17 1115 02 0	PPS CCP 2	10.	.42	iiig/i	6.44	27.19	1747	0.27	2.20	240.2	000 11	Vallow	Mild	Time	
L173113-03 A	CCR-P7-4	10.	.42		0.44	27.10	1747	0.37	2.39	-249.3		Tellow	IVIIIQ		
LIMS #	250ml Circn (2)	11.100	ora (1)	E00ml Inorg (2)	250ml Iporg (2)	11 Mtto (1)	2E0ml Mtla (2)	11 Rode (1)	E00ml Sulfida (2)	E00ml Mtlc (2)	250ml Nuto (2)	40ml Vial (6)	E00 ml Nuto (2)	11 Rodo Dico (1)	Total Containara
			Jig (1)	1 south more (2)	250mm morg (5)		230m Mus (3)	IL Raus (1) ✓ 2	Soonn Sainde (2)	500mm with s (2)	250111 Nuts (5)	40111 Viai (0)	500 mi Nuts (2)		Total Containers
L173115-03 A	<u> </u>					<u> </u>	<u> </u>		n			n	┨┌┐─────		5
(1) 11 plactic (PP)		(2) 500m	al plactic		(2) 250ml plastia		(4) 100ml coliform br							Samulas On las	Samula Decient
	0107301V	(2) 30011		0218201V		0307301V		Jue		A0)		(66)			
200	Decemention	100		02102011	Dave ID	03073011	Basesmentien		200	David ID	200	Dessention	1	Dere ID	
11 bottles (rade): 5 ml H	NO2 to pH +2					250ml bottlos (put	Preservation				500 ml bottloc/Sulfi	de) 2ml NAOH/Zing	Apot to pH > 12		10mp 1.4
TE bollies (rads). 5 min	2 ml HNO2 to pH <2					230ml boules (nu	0.5 ml H2SO4 to pH	-2			350 ml bottles (Sum	n) 1a NAOH to nH >	12		
250 ml bottles (metals).						40 mi viai (TOC).	0.5 min H2304 to pH	< <u><</u>		A shasked bey ins		12			
250 mi botties (metal). I		D	ID	Duffen Melve	- 012558	TL Dotties (diss. 12	ads). Intered with 0.45	Time	001/		A checked box inc	Time a	Tamp °C	a pri or <z< td=""><td>These Malue and</td></z<>	These Malue and
Meter Calibration	MDM09	L 01	19949D	Duffer Value		7:02	7.02	Time		14:20		7:10			
	IVIFIVIUO		190740	10	10	7:02	7.03	/.00	(,) (Dedex (40	14.29		11.00	21.3 24.4	230.0	230.2
			193030	10	10	7:02	A checked how indi	cates ICV / CCV paged	g/L) (Redox +/- 10mv			14.33	21.1	233.5	230.2
Conductivity Motor Co	lib	Stonds	ard ID	+ Std Volue	+	Timo		Time	CCV	Timo					
Conductivity weter Ca			18805E	1000	1000	7.14	icv	Time	CCV	Time		Time	Temp °C	Deading mg/l	Theo Volue mail
Meler ID.			10100E	1000	1000	7.14	0830	7.10	0701	14:01	DO Meter Cal	C:E4	21.4	Reading mg/i	
FDEP FT 1200, Units: u	IMHOS		191000	10000			9630	7.10	9791	14.01	Meter ID:	0.54	21.4	0.90	0.003
Turbidity Meter Calibra	TM07 I 01983 5 50		Std Value	Acceptabl	lity Range		Lime C:42	CCV	10-50		14:42	20.8	8.97	8.950	
Meter ID:	TIVIU7		019003	0.00	5.00	0.12	5.60	6:43	10.0	13:59	Barom. Pres				
				-					=	760					
Sulfite Info (QC Check	Gulfite Info (QC Check) (EPA 377.1) QC Result			QC Result mg/l	Lime	Litrator ID	Na Thio ID	DO 3 Pillow ID	Starch Ind. ID	Iodate/Iodide ID		рн 0.2	Conduct.(%)	DO (mg/l)	Redox (mv)
Burging Information	oomi Di=Tomg/L	Well Ca	nacitics	(gallong/ft): 2"	-0.16 4" -0.65		Tubing Incide Diam	Capacities Gallons/ft)				0.2	J	0.5	10
Furging mormation		Well Ca	pacities	(gallolis/ itj. 2	Well	Depth to	Water	Well	1 Well		Tubing	Pump	Cell	1 Eapt	
Well #	Diam/ Comp	Scre Interva	een al (ft)	Intake Depth (ft)	Depth (ft)	Water (ft)	= Column x	Capacity (gal) =	Volume (gal)	Capacity X (gal/ft.)	Length)	► Volume + (gal)	Volume (gal) =	Volume (gal)	
BBS-CCR-3	2	1(0	18.23	23.23	6.52	16.71	0.16	2.67	0.0026	24.23	0	0.06	0.12	
Purge Meth:	Time	Rate (m	ml/min)	Volume (gal)	Total Vol. (gal)	Water Depth (ft)	pH (SU)	Temp °C	Cond (uMHOS)	DQ (mg/L)	Turbidity (NTU)	Purge Criteria	Status	Equipment ID	Egot Table
1A	10.22	18	30	0.43	0.43	6.72	6 47	27.31	1785	0.36	1 59	ph:+/- 0.2	STABLE	Level Meter	WI M08
Purge Start:	10.24	19	30	0.10	0.53	6.72	6 45	27 20	1763	0.50	1 13	TempºC+/- 0.2	STABLE	Pump [.]	PP
10.13	10.26	19	30	0.10	0.63	6.71	6 44	27.18	1747	0.37	2 39	Cond % +/- 5	STABLE	Tubina:	PE/S
Purge End:			-	2.10	2.00							DO % Sat.< 20	STABLE	Dedicated	✓ Yes
10:26												Turb. NTU < 20	STABLE	Tubing?	
Purge Complete A	t 10:16	Gallon	ns to P	urge 0.12	Stablility	Values =	6.44	27.18	1747	0.37	2.39	-		× ·	
Mell #	Diam/ Comp	Scre	een	Intake	Well Depth (ft)	Depth to Water (ft)	= Water x	Well Capacity (gal) =	1 Well Volume (gal)	Capacity X	Tubing Length) - (ft)	Pump F Volume (gal) +	Cell Volume (gal) =	1 Eqpt. Volume (gal)	
vven#	2	11	0	14	18		18.00	0.16	2.88	0.0026	100	0	0.06	0.32	
Purge Meth	Time	Rote (m	ml/min)			Water Depth (ft)	nH (SII)	Temp °C	Cond (uMHOS)	DO (mg/L)	Turbidity (NTU)	Purge Criteria	Status	Equipment ID	East Table
r urge metri.	Time	Rate (II	111/11111)	volume (gai)	Total Vol. (gal)	Water Deptit (it)	pir(30)	Temp C	Cond (divinios)	DO (IIIg/E)	Turblaty (NTO)	nb:+/- 0.2	Status	Level Meter:	WI MO8
Durme Starts												Tomp ⁰ C+/- 0.2		Level Meter.	
r urge Start:												5 S	1	Tubina:	DE/S
Burgo Endr												Cond % +/-	+	nubing. Dedicated	
Purge End:		<u> </u>										Turb NTU ~ 20		Tubing?	
Purge Complete A	Af	Gallon	is to P	urge 0.32	Stablity	Values –						100.110< 20	<u> </u>	r ubing :	
Comments:		Junon		9º 0.3Z	Stabilly	v aluco =				I	I		Total Time	Total	Miles

Site:	Big Be	end		Date:	10/13/17	File Name:	101317_	Wells_RAB	Weather:	Partly Clou	ıdy & Warm	Sampler(s) / Initials	RAB /TECO Initials		
LIMS #	Loction Code	Tin	ne	FE ²	pH (SU)	Temp °C	Cond(uMHOS)	DO Mg/L	Turbidity(NTU)	Redox (mv)	Sulfite (mg/L)	Color	Odor	N	GVD
				mg/l	PH	TEMP-C	COND-F	DO	TURB-N-F	REDOX	SO3-TR	\$COLOR-W	\$ODOR-W	Time	LEVEL
L17J115-04 A	BBS-CCR-BW-1	10:0	04		6.6	27.9	4570	0.4	2.5	-18.4		Clear	None		
L17J115-05 A	BBS-CCR-BW-2	9:4	10		6.7	28.0	1699	0.3	4.0	-72.1		Lt. Yellow	None		
LIMS #	250ml Cyan (3)	1L Inor	rg (1)	500ml Inorg (2)	250ml Inorg (3)	1L Mtls (1)	250ml Mtls (3)	1L Rads (1)	500ml Sulfide (2)	500ml Mtls (2)	250ml Nuts (3)	40ml Vial (6)	500 ml Nuts (2)	1L Rads Diss. (1)	Total Containers
L17J115-04 A			0.,	1			⊻ 2	⊻ 2						-	40
L17J115-05 A				1			∀ 2	✓ 2		8					10
(1) 1L plastic (PP)		(2) 500m	nl plastic	(PP)	(3) 250ml plastic	(PP)	(4) 100ml coliform bo	ottle	(5) 1L amber glass (AG)	(6) 40ml VOA vial (CG)		Samples On Ice	Sample Reciept
ESS	0107301Y	ESS		0218201Y	ESS	0307301Y	ESS		ESS		ESS			Yes No	Time 14:18
	Preservation	-			Pres ID		Preservation			Pres ID		Preservation		Pres ID	Temp _{1.4} C
1L bottles (rads): 5 ml H	INO3 to pH <2				L 012558	250ml bottles (nut	ts): 1 ml H2SO4 to pH	<2			500 ml bottles(Sulfi	de) 2ml NAOH/Zinc /		1	
500 ml bottles (metals):	2 ml HNO3 to pH <2				L D	40 ml Vial (TOC):	0.5 ml H2SO4 to pH	<2			250 ml bottles (Cva	n) 1a NAOH to pH >	12		
250 ml bottles (metal): 1	1 ml HNO3 to $pH < 2$				L 012558	11 bottles (diss ra	ads): filtered with 0.45	um 5 ml HNO3 to pH <2			A checked box ind	licates that the sam	nle was verified to	a pH of <2	
nH Meter Calibration	er Calibration Buffer ID Buffer			Buffer Value	Cal	Time		Time	CCV	Time	Redox Cal	Time	Temp °C	Reading my	Theo Value my
Motor ID:	MPM08	L 01	19949D	7	7	7:02	7.03	7:06	7 11	14.29	Meter ID:	7:10	21.5	236.0	236.2
EDER ET 1100		L 01	19074C	10	10	7:02	00: (pH +/-0.2) (Co	nd +/- 5%) (DO +/- 0.3m	g/L) (Redox +/- 10m)	11.20	MPM08	14:33	21.0	233.5	236.2
Linits: SI I		L 01	19303D	4	4	7:02	A checked box indi	rates ICV / CCV passed		7	Zobell Sol ID:	14.00	21.1	200.0	200.2
Conductivity Meter Ca	lib	Standa		Std Value	Cal	Time		Time	CCV	Time	L 019150B				
Motor ID:	MPM08		18805E	1000	1000	7:14	101	Time	000	Time	DO Motor Cal	Timo	Temp °C	Pooding mg/l	Theo Value mg/l
EDER ET 1200 Libito: u		L 01	19100B	10000	1000	7.14	0830	7.18	0701	14:01	Motor ID:	6:54	21.4	8 QO	8 863
FDEP FT 1200, Onits: u	INHOS	010101		0.000	Assessed	The Develo	9830	7.10	9791	14.01		14:42	21.4	8.90	0.003
Turbidity Meter Calibra		Standa	ard ID	Std Value	Acceptab	lity Range		Lime C:42		10-50		14:42	20.8	8.97	8.950
Meter ID:			013003	5.50	5.00	0.12	5.60	0.43	5.01	13.59	Barom. Pres				
FDEP FT 1600, Units: N	Ulita Info (OC Chook) (ERA 277.1)										760				
Sulfite Info (QC Check	(EPA 377.1)			QC Result mg/l	Lime	Litrator ID	Na Thio ID	DO 3 Pillow ID	Starch Ind. ID	Iodate/Iodide ID		рн 0.2	Conduct.(%)	DO (mg/l)	Redox (mv)
QC Sid: Shir (Nathio)/Si	oomi Di=Tomg/L	Well Car		(malleng/ ft), 2"	0.46 4" 0.65		Tubing Incide Diam	Conscition College/th	1/4" 0.0026 2/8" /		IVIF IVIO8	0.2	5	0.3	10
Furging mormation		Wen Cap	pacifies	(gallolis/ itj. 2	Well	Denth to	Water	Well	1 Well		Tubing	Pump	Cell	1 Egot	
Well #	Diam/ Comp	Scre Interva	een al (ft)	Intake Depth (ft)	Depth (ft)	Water (ft)	= Vvaler X Column (ft)	Capacity (gal) =	Volume (gal)	Capacity (gal/ft.)	Length) +	- Volume + (gal) +	Volume (gal) =	Volume (gal)	
BBS-CCR-BW-1	2	10	C	39.3	44.3	29.60	14.70	0.16	2.35	0.0026	100	0	0.06	0.32	
Purge Meth:	Time	Rate (m	nl/min)	Volume (gal)	Total Vol. (gal)	Water Depth (ft)	pH (SU)	Temp °C	Cond (uMHOS)	DO (mg/L)	Turbidity (NTU)	Purge Criteria	Status	Equipment ID	Eqpt. Table
1A	9:57	260	00	5.49	5.49	30.43	6.55	27.81	4384	0.87	7.30	ph:+/- 0.2	STABLE	Level Meter:	WLM08
Purge Start:	9:59	260	00	1.37	6.86	30.42	6.55	27.81	4499	0.57	4.40	TempºC+/- 0.2	STABLE	Pump:	ESP
9:49	10:01	260	00	1.37	8.23	30.41	6.55	27.86	4570	0.40	2.51	Cond % +/- 5	STABLE	Tubing:	PE
Purge End:												DO % Sat.< 20	STABLE	Dedicated	Yes
10:01												Turb. NTU < 20	STABLE	Tubing?	✓ No
Purge Complete A	^t 9:49	Gallon	is to P	urge 0.32	Stability	Values =	6.55	27.86	4570	0.40	2.51				
)A/-11 //	Diam/ Oama	Scre	en	Intake	Well Depth (ft)	Depth to Water (ft)	= Water Column x	Well Capacity (gal) =	1 Well Volume (gal)	(Tubing X Capacity X	Tubing Length) -	Pump + Volume + (gal)	Cell Volume (gal) =	1 Eqpt. Volume (gal)	
BBS-CCP-BW/ 2	Diani/ Comp	1 riterva	n (n) N	18 /0	23.94	7 39	16.46	0.16	2.63	0.0026	24.64		0.06	0.12	
Durge Methy	- Z	Data (m	J	Velume (rel)	23.04	Water Depth (%)	10.40	0.10	Cand (HUIDO)	0.0020	Z4.04	Duran Onitania	0.00	0.12	East Table
		Rate (m	0	1 75	1 75		рн (SU) 6 69		1706			rurge Critteria			
	9.20	51	0	1.75	1.75	7.01	0.00	27.92	1700	0.39	4.90	pil.+/- 0.2	STABLE		
Purge Start:	9.30	50		0.20	2.01	7.02	0.09	21.90	1600	0.31	0.12	Tomp ^o C+/-	STABLE	rump. Tubin <i>ar</i>	
9:15	9:32	50	U	0.26	2.27	1.62	6.70	27.98	1699	0.28	3.96	Cond % +/- 0	STABLE	Tubing:	PE/S
Purge End:												DO % Sat.< 20	STABLE	Dedicated	
9:32	A 0-40	Coller			0 to b 111	\/_l	0.70	07.00	4000	0.00	0.00	iurb. NIU < 20	STABLE	i ubing?	III NO
Furge Complete A	u 9:16	Gallon	IS TO PI	urge 0.12	Stability	values =	6.70	27.98	1699	0.28	3.96				
Comments:													Total Time	Total	Miles