Mr. Randy Melton
Administrator
Planning and Environmental Health & Safety
702 North Franklin Street
Tampa, FL 33602

Subject: Summary of Results – Second Detection Monitoring Event
Economizer Ash and Pyrite Pond System
Big Bend Station – Tampa Electric Company

Dear Mr. Melton,

Geosyntec Consultants, Inc. (Geosyntec) has prepared the enclosed technical memorandum to summarize the findings from the Second Detection Monitoring Event performed at the Economizer Ash and Pyrite Pond System located at Big Bend Station. The detection monitoring event for Appendix III parameters was conducted in accordance with 40 CFR 257.94 of the federal Coal Combustion Residual Rule.

The Appendix III results were compared against background concentrations derived previously using statistical methods that comply with the allowable methods specified in 40 CFR 257.93. Groundwater pH was the only Appendix III parameter detected above background levels. However, the Alternate Source Demonstration (April 2018) prepared in accordance with 40 CFR 257.94(3)(e) documented that groundwater pH is not a statistically significant increase (SSI) attributable to a release from the EAPPS. As a result, detection monitoring will continue at the EAPPS in the absence of an Appendix III SSI.

Please contact us at 813-558-0990 if you have further questions.

Sincerely,

GEOSYNTEC CONSULTANTS, INC.

Todd K. Kafka (FL PG 2338)
Principal

Michael N. Lodato (FL PG 1351)
Senior Principal
On April 17, 2015, the United States Environmental Protection Agency (USEPA) published 40 Code of Federal Regulations (CFR) Parts 257 and 261: Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule (USEPA, 2015). This regulation addresses the safe disposal of coal combustion residuals (CCR) as solid waste under Subtitle D of the Resource Conservation and Recovery Act (RCRA) and is referred to herein as the CCR Rule. The CCR Rule became effective on October 14, 2015 and provides national minimum criteria for “the safe disposal of CCR in new and existing CCR landfills, surface impoundments, and lateral expansions, design and operating criteria, groundwater monitoring and corrective action, closure requirements and post closure care, and recordkeeping, notification, and internet posting requirements.” The groundwater monitoring requirements of the CCR Rule apply to the economizer ash and pyrite pond system (EAPPS) at Tampa Electric Company’s (TEC) Big Bend Power Station (BBS) in southeast Hillsborough County in Gibsonton, Florida. TEC installed a groundwater monitoring system (GMS) at the EAPPs that complies with 40 CFR 257.91 and performed baseline groundwater sampling events in accordance with 40 CFR 257.93.

Geosyntec Consultants, Inc. (Geosyntec) has prepared this technical memorandum to summarize the results of the second detection monitoring event as required by 40 CRF 257.94. Geosyntec’s statistical analyses were performed in accordance with the Statistical Analysis Plan dated 15 October 2017.
BACKGROUND

The GMS was installed at the EAPPs in May 2016 and consists of two background monitoring wells, BBS-CCR-BW1 and BBS-CCR-BW2, and three downgradient monitoring wells, BBS-CCR-1, BBS-CCR-2, and BBS-CCR-3. TEC conducted eleven baseline groundwater sampling events from the GMS between June 2016 and October 2017 and analyzed the samples for Appendix III and Appendix IV constituents as required in 40 CFR 257.93. The inorganic data were reviewed based on the following: *CCR Groundwater Monitoring Program Plan*, Big Bend Power Station, Apollo Beach, Florida, September 2016, USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, August 2014 (OSWER 9355.0-131, EPA 540-R-013-001), as well as by the pertinent methods referenced by the data package and professional and technical judgment.

Geosyntec prepared a *Statistical Analysis Plan* to provide details on the selection of statistical methods in accordance with the provisions set forth in 40 CFR 257.93 “Groundwater sampling and analysis requirements.” Background concentrations were established for each of the constituents listed in 40 CFR 257 Appendix III by analyzing the data from the two background wells. A 95% upper prediction limit (UPL) was established for each constituent from the baseline sampling events conducted between June 2016 and August 2017 and the first detection monitoring event in October 2017. In accordance with the *Statistical Analysis Plan*, the same methodology used for the first detection monitoring event was performed for the second detection monitoring event (April 2018) and is not repeated herein. Details of the derivation of the background concentrations and the results of the first detection monitoring event are summarized in the summary memorandum *Summary of Statistical Analyses of Baseline Groundwater Samples Economizer Ash and Pyrite Pond System* dated January 2018.

DETECTION MONITORING RESULTS

The second detection monitoring event consisted of five groundwater samples collected from the GMS in April 2018. Geosyntec reviewed and performed a Stage 2A data validation, consistent with the data collected previously. The data as qualified were deemed usable for meeting project objectives. The data validation summary memorandum is provided in *Attachment A*.

A comparison of the second detection monitoring results to the background values for the Appendix III constituents is shown in *Table 1* and indicates pH concentrations above background in two of the three downgradient monitoring wells, BBS-CCR-1 and BBS-CCR-2. The established UPL for pH is 6.70 standard units (SU) and the pH at BBS-CCR-1 and BBS-CCR-2 were 6.83 and 6.86 SU, respectively. These same two wells had similar pH values during the first detection monitoring event (October 2017).
CONCLUSIONS

As specified in 40 CFR 257.94(3) (e), Geosyntec provided an alternate source demonstration (ASD) that the elevated pH values are not SSIs as they do not appear to be attributable to a release from the EAPPS but are instead attributable to natural variability (e.g., local background and changes in groundwater flow directions) and within the margin of error for the field pH instrument (Alternate Source Demonstration – Economizer Ash and Pyrite Pond System dated April 2018). In the absence of SSIs for other Appendix III constituents, TEC will continue with detection monitoring as applicable for the EAPPS.

* * * * *
TABLE
TABLE 1 - DETECTION MONITORING RESULTS, TEC BIG BEND STATION ECONOMIZER ASH AND PYRITE POND SYSTEM, APOLLO BEACH, FL

<table>
<thead>
<tr>
<th>Analytical Parameter</th>
<th>Boron, total</th>
<th>Calcium, total</th>
<th>Chloride, total</th>
<th>Fluoride, total</th>
<th>pH (field)</th>
<th>Sulfate, total</th>
<th>Total Dissolved Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Units</td>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
<td>mg/L</td>
<td>STD</td>
<td>mg/L</td>
<td>mg/L</td>
</tr>
<tr>
<td>Background Concentration Value</td>
<td>59.1</td>
<td>781</td>
<td>1,140</td>
<td>0.559</td>
<td>(6.38, 6.70)</td>
<td>1,550</td>
<td>5,050</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Well ID</th>
<th>Sample Collection Date</th>
<th>April 2018 Detection Monitoring Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBS-CCR-1</td>
<td>4/13/2018</td>
<td>19.6</td>
</tr>
<tr>
<td>BBS-CCR-2</td>
<td>4/13/2018</td>
<td>0.966</td>
</tr>
<tr>
<td>BBS-CCR-3</td>
<td>4/13/2018</td>
<td>0.180</td>
</tr>
</tbody>
</table>

Notes:
- Bold text indicates statistically significant increase above background concentration values. However, SSIs addressed through Alternate Source Demonstration dated April 2018.
- < - concentration not detected at or above the adjusted reporting limit.
- mg/L - milligrams per liter
- STD - standard units
ATTACHMENT A
Memorandum

Date: 25 May 2018
To: Todd Kafka
From: Chris Pracheil
CC: J. Caprio

Subject: Stage 2A Data Validation – Level II Data Deliverable – Tampa Electric Laboratory Services #L18D079 and L18D116, TestAmerica #660-86743-1 and KNL Environmental Testing # L18D079 and L18D116

SITE: Big Bend Power Station, Apollo Beach, Florida

INTRODUCTION

This report summarizes the findings of the Stage 2A data validation of five water samples, collected on April 13, 2018 and one water sample, collected on April 25, 2018 as part of the Big Bend Power Station coal combustion residuals (CCR) groundwater monitoring program plan. The lithium analyses were performed by TestAmerica Laboratories, Inc., Tampa, Florida (TA). The radium analyses were performed by KNL Environmental Testing, Tampa, Florida (KNL). The rest of the analyses were performed by Tampa Electric Laboratory Services, Tampa, Florida (TELS). The samples were analyzed for the following:

- Metals by EPA Methods 200.8 and 6010B
- Mercury by EPA Method 7470A
- Radium-226 by EPA Method 903.0
- Radium-228 by EPA Method Ra-05
- Chloride, Fluoride and Sulfate by EPA Method 300.0
- Total Dissolved Solids by Standard Method 2540C

EXECUTIVE SUMMARY

The samples were handled, prepared, and measured in the same manner under similar prescribed conditions.
Overall, based on this Stage 2A data validation covering the quality control (QC) parameters listed below, the data as qualified are usable for meeting project objectives. The qualified data should be used within the limitations of the qualifications.

The inorganic data were reviewed based on the following: CCR Groundwater Monitoring Program Plan, Big Bend Power Station, Apollo Beach, Florida, September 2016 (GWMP), USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, January 2017 (OLEM 9355.0-135, EPA 540-R-2017-001), as well as by the pertinent methods referenced by the data package and professional and technical judgment.

The following samples were analyzed and validated at a Stage 2A level in the data set:

<table>
<thead>
<tr>
<th>Laboratory ID</th>
<th>Client ID</th>
<th>Laboratory ID</th>
<th>Client ID</th>
</tr>
</thead>
</table>

The samples were received at the laboratories at 1.2°C and 1.8°C within the criteria of 0-6°C. No sample preservation or sample receipt issues were noted by the laboratories.

1.0 TOTAL METALS

The samples were analyzed for total metals per EPA Methods 200.8 and 6010B.

The areas of data review are listed below. A leading check mark (✓) indicates an area of review in which the data were acceptable. A preceding crossed circle (⊗) signifies areas where issues were raised during the course of the validation review and should be considered to determine the impact on data quality and usability.

✓ Overall Assessment
✓ Holding Times
⊗ Method Blank
✓ Matrix Spike/Matrix Spike Duplicate
⊗ Laboratory Control Sample
✓ Serial Dilution
✓ Field Duplicate
✓ Sensitivity
✓ Electronic Data Deliverable Review
1.1 Overall Assessment

The metals data reported in this package are considered usable for meeting project objectives. The results are considered valid; analytical completeness, defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for analysis for the data set is 100%.

1.2 Holding Times

The holding time for the metals analysis of waters is 180 days from sample collection to analysis. The holding times were met for the sample analyses.

1.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three method blanks were reported (method 200.8 batch 18D0100 and method 6010B batches 18D0095 and 394328). Metals were not detected in the method blanks above the method detection limits (MDLs), with the following exceptions.

Calcium was detected at an estimated concentration, greater than the MDL and less than the reporting limit (RL) in the method blank associated with batch 18D0095 and cadmium, cobalt, lead and thallium were detected at estimated concentrations, greater than the MDLs and less than the RLs in the method blank associated with batch 18D0100. Therefore, the estimated concentrations of cadmium, cobalt, lead and thallium in the associated samples were U qualified as not detected at the RLs. Since calcium was detected above the RL in the associated samples no qualifications were applied to the calcium data.

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>Compound</th>
<th>Laboratory Result (µg/L)</th>
<th>Laboratory Flag</th>
<th>Validation Result (µg/L)</th>
<th>Validation Qualifier*</th>
<th>Reason Code**</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBS-CCR-1 (4/13/18)</td>
<td>Cadmium</td>
<td>0.25</td>
<td>V,I</td>
<td>0.5</td>
<td>U</td>
<td>3</td>
</tr>
<tr>
<td>BBS-CCR-1 (4/13/18)</td>
<td>Cobalt</td>
<td>0.522</td>
<td>V,I</td>
<td>2.0</td>
<td>U</td>
<td>3</td>
</tr>
<tr>
<td>BBS-CCR-1 (4/13/18)</td>
<td>Lead</td>
<td>0.328</td>
<td>V,I</td>
<td>2.0</td>
<td>U</td>
<td>3</td>
</tr>
<tr>
<td>BBS-CCR-2 (4/13/18)</td>
<td>Cobalt</td>
<td>0.108</td>
<td>V,I</td>
<td>2.0</td>
<td>U</td>
<td>3</td>
</tr>
<tr>
<td>BBS-CCR-2 (4/13/18)</td>
<td>Lead</td>
<td>0.167</td>
<td>V,I</td>
<td>2.0</td>
<td>U</td>
<td>3</td>
</tr>
<tr>
<td>BBS-CCR-3 (4/13/18)</td>
<td>Cobalt</td>
<td>0.154</td>
<td>V,I</td>
<td>2.0</td>
<td>U</td>
<td>3</td>
</tr>
<tr>
<td>BBS-CCR-3 (4/13/18)</td>
<td>Lead</td>
<td>0.0911</td>
<td>V,I</td>
<td>2.0</td>
<td>U</td>
<td>3</td>
</tr>
<tr>
<td>BBS-CCR-BW1 (4/13/18)</td>
<td>Cadmium</td>
<td>0.145</td>
<td>V,I</td>
<td>0.5</td>
<td>U</td>
<td>3</td>
</tr>
<tr>
<td>BBS-CCR-BW1 (4/13/18)</td>
<td>Cobalt</td>
<td>1.87</td>
<td>V,I</td>
<td>2.0</td>
<td>U</td>
<td>3</td>
</tr>
<tr>
<td>BBS-CCR-BW1 (4/13/18)</td>
<td>Lead</td>
<td>0.236</td>
<td>V,I</td>
<td>2.0</td>
<td>U</td>
<td>3</td>
</tr>
</tbody>
</table>
1.4 **Matrix Spike/Matrix Spike Duplicate (MS/MSD)**

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one pair per batch of 20 samples). A sample set specific MS/MSD pair was reported for the method 200.8 data using sample BBS-CCR-1 (4/13/18). The recovery and relative percent difference (RPD) results were within the laboratory specified acceptance criteria.

Batch MS/MSD pairs were reported for the method 6010B data. Since these are batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

1.5 **Laboratory Control Sample (LCS)**

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three LCSs were reported; one for method 200.8 and two for method 6010B. The recovery results were within the laboratory specified acceptance criteria; however, it was noted that calcium was not included in the LCS spike for batch 18D0095. Therefore, the concentrations of calcium in the associated samples were J qualified as estimated.
1.6 **Serial Dilution**

Serial dilutions were not reported.

1.7 **Field Duplicate**

Field duplicates were not reported with the sample sets.

1.8 **Sensitivity**

The samples were reported to the MDLs. The MDLs met the limits listed in Table 4 of the CCR Groundwater Monitoring Plan.

1.9 **Electronic Data Deliverable (EDD) Review**

The results and sample identifications (IDs) in the EDD were reviewed against the information provided by the associated level II reports at a minimum of 20% as part of the data validation process. The laboratory flags used in the laboratory report did not match the flags used in the EDD. No other discrepancies were identified between the level II reports and the EDD.

2.0 **MERCURY**

The samples were analyzed for mercury per EPA Method 7470A.

The areas of data review are listed below. A leading check mark (✔) indicates an area of review in which the data were acceptable. A preceding crossed circle (⊗) signifies areas where issues were raised during the course of the validation review and should be considered to determine the impact on data quality and usability.

✔ Overall Assessment
✔ Holding Times
✔ Method Blank
✔ Matrix Spike/Matrix Spike Duplicate
✔ Laboratory Control Sample
✔ Field Duplicate
✔ Sensitivity
✔ Electronic Data Deliverable Review
2.1 Overall Assessment

The mercury data reported in this package are considered usable for meeting project objectives. The results are considered valid; analytical completeness, defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for analysis for the data set is 100%.

2.2 Holding Times

The holding time for the mercury analysis of a water sample is 28 days from sample collection to analysis. The holding times were met for the sample analyses.

2.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One method blank was reported (batch 18D0103). Mercury was not detected in the method blank above the MDL.

2.4 Matrix Spike/Matrix Spike Duplicate

MS/MSD pairs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One sample set specific MS/MSD pair, using sample BBS-CCR-BW-2 (4/13/18), was reported. The recoveries and RPD results were within the laboratory specified acceptance criteria.

2.5 Laboratory Control Sample

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One LCS was reported. The recovery result was within the laboratory specified acceptance criteria.

2.6 Field Duplicate

Field duplicates were not reported with the sample sets.

2.7 Sensitivity

The samples were reported to the MDL. No elevated non-detect results were reported. The MDL for mercury met the limit listed in Table 4 of the CCR Groundwater Monitoring Plan.
2.8 **Electronic Data Deliverable Review**

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II reports at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II reports and the EDD.

3.0 **RADIUM-226 AND RADIUM-228**

The samples were analyzed for radium 226 and radium 228 per EPA Methods 903.0 and RA-05, respectively.

The areas of data review are listed below. A leading check mark (✓) indicates an area of review in which the data were acceptable. A preceding crossed circle (⊗) signifies areas where issues were raised during the course of the validation review and should be considered to determine the impact on data quality and usability.

- ✓ Overall Assessment
- ✓ Holding Times
- ✓ Method Blank
- ✓ Matrix Spike
- ✓ Laboratory Control Sample
- ✓ Laboratory Duplicate
- ✓ Sensitivity
- ✓ Electronic Data Deliverable Review

3.1 **Overall Assessment**

The radium-226 and radium-228 data reported in this package are considered usable for meeting project objectives. The results are considered valid; the analytical completeness, defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for analysis for the data set is 100%.

3.2 **Holding Times**

The holding times for radium-226 and radium-228 analysis of waters are 180 days from sample collection to analysis. The holding times were met for the sample analyses.
3.3 Method Blank

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Six method blanks were reported (three for the radium-226 and three for the radium-228). The method blanks were within validation criteria with the following exceptions.

Radium-226 was detected at concentrations greater than 1.65 times the combined standard uncertainty (CSU) in batches L18D079 and L18D116. Since the detections of radium-226 and combined radium data (radium-226 + radium-228) were greater than 10 times the blank concentrations in the associated samples, no qualifications were applied to the data.

3.4 Matrix Spike

MSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One sample set specific MS, using sample BBS-CCR-BW-2 (4/13/18) was reported for radium-228. The recovery results were within the laboratory specified acceptance criteria.

Batch MSs were also reported for the radium-226 and radium-228 data. Since these are batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

3.5 Laboratory Control Sample

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Three LCSs were reported for radium-226 and three for radium-228. The recovery results were within the laboratory specified acceptance criteria.

3.6 Laboratory Duplicate

Laboratory duplicates were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). One sample set specific laboratory duplicate, using sample BBS-CCR-BW-2 (4/13/18) was reported for radium-228. The RPD result for the laboratory duplicate was within the laboratory acceptance criteria.

Batch laboratory duplicates were also reported for the radium-226 and radium-228. Since these are batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

3.7 Sensitivity
The samples were reported to the minimum detectable concentrations (MDCs). The reported MDCs met the limits listed in Table 4 of the CCR Groundwater Monitoring Plan.

3.8 Electronic Data Deliverable Review

The results and sample IDs in the EDD were reviewed against the information provided by the associated level II reports at a minimum of 20% as part of the data validation process. No discrepancies were identified between the level II reports and the EDD.

4.0 WET CHEMISTRY PARAMETERS

The samples were analyzed for chloride, fluoride and sulfate by EPA Method 300.0 and total dissolved solids by SM 2540C.

The areas of data review are listed below. A leading check mark (✓) indicates an area of review in which the data were acceptable. A preceding crossed circle (⊗) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

⊗ Overall Assessment
✓ Holding Times
✓ Method Blank
✓ Matrix Spike/Matrix Spike Duplicate
✓ Laboratory Control Sample
✓ Laboratory Duplicate
✓ Field Duplicate
✓ Sensitivity
✓ Electronic Data Deliverables Review

4.1 Overall Assessment

The wet chemistry data reported in this package are considered usable for meeting project objectives. The results are considered to be valid; the analytical completeness, defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for analysis, for the data set 100%.

4.1.1 Analytical Anomalies

The case narratives for laboratory report L18D079 noted that a constant weight could not be achieved after three consecutive weighing and drying cycles for the total dissolved solids analysis
of samples BBS-CCR-3 (4/13/18). Therefore, the concentration of total dissolved solid in this sample was J qualified as estimated.

<table>
<thead>
<tr>
<th>Client Sample ID</th>
<th>Compound</th>
<th>Laboratory Result (mg/L)</th>
<th>Laboratory Flag</th>
<th>Validation Result (mg/L)</th>
<th>Validation Qualifier</th>
<th>Reason Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBS-CCR-3 (4/13/18)</td>
<td>Total Dissolved Solids</td>
<td>1310</td>
<td>J-</td>
<td>1310</td>
<td>J</td>
<td>13</td>
</tr>
</tbody>
</table>

mg/L-milligrams per liter
J--the reported value is an estimated value

4.2 **Holding Times**

The holding times for chloride, fluoride and sulfate by EPA method 300.0 are 28 days from sample collection to analysis and the holding time for total dissolved solids by SM 2540C is 7 days from sample collection to analysis. The holding times were met for the sample analyses.

4.3 **Method Blanks**

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). Method blanks were reported for each analysis as appropriate. The wet chemistry parameters were not detected in the method blanks above the MDLs, with the following exceptions.

Chloride and fluoride were detected at estimated concentrations greater than the MDLs and less than the RLs in the method blank for batch 18D0099. Since chloride and fluoride were detected above the RLs in the associated samples, no qualifications were applied to the data.

4.4 **Matrix Spike/Matrix Spike Duplicate**

MS/MSDs were analyzed at the proper frequency for the number and types of samples analyzed (one pair per batch of 20 samples). A sample set specific MS/MSD pair was reported for the method 300.0 data using sample BBS-CCR-1 (4/13/18). The recovery and RPD results were within the laboratory specified acceptance criteria, with the following exceptions.

The recoveries of chloride and sulfate were low and outside the laboratory limits in the MS/MSD pair using sample BBS-CCR-1 (4/13/18). Based on the sample concentrations of chloride and sulfate compared to the spike amount (greater than four times the spike concentration), no qualifications were applied to the data based on technical and professional judgement.
A batch MS/MSD pair was also reported for the method 300.0 data. Since these are batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

4.5 **Laboratory Control Sample**

LCSs were analyzed at the proper frequency for the number and types of samples analyzed (one per batch of 20 samples). LCSs were reported for each analysis as appropriate. The recovery results were within the laboratory specified acceptance criteria.

4.6 **Laboratory Duplicate**

Laboratory duplicates were reported for the total dissolved solids data. One sample set specific laboratory duplicate was reported for total dissolved solids using sample BBS-CCR-1 (4/13/18). The RPD results were within the laboratory specified acceptance criteria.

A batch laboratory duplicate was also reported for the total dissolved solids data. Since these are batch QC, the results do not affect the samples in this data set and qualifications were not applied to the data.

4.7 **Field Duplicate**

Field duplicates were not reported with the sample sets.

4.8 **Sensitivity**

The samples were reported to the MDLs. The MDLs reported met the limits listed in Table 4 of the CCR Groundwater Monitoring Plan.

4.9 **Electronic Data Deliverables Review**

The results and sample identifications (IDs) in the EDD were reviewed against the information provided by the associated level II reports at a minimum of 20% as part of the data validation process. The laboratory flags used in the laboratory report did not match the flags used in the EDD. No other discrepancies were identified between the level II reports and the EDD.

* * * * *
ATTACHMENT 1
DATA VALIDATION QUALIFIER DEFINITIONS
AND INTERPRETATION KEY
Assigned by Geosyntec’s Data Validation Team

DATA QUALIFIER DEFINITIONS

U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

J+ The analyte was positively identified; however, the associated numerical value is likely to be higher than the concentration of the analyte in the sample due to positive bias of associated QC or calibration data or attributable to matrix interference.

J- The analyte was positively identified; however, the associated numerical value is likely to be lower than the concentration of the analyte in the sample due to negative bias of associated QC or calibration data or attributable to matrix interference.

UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
ATTACHMENT 2
DATA VALIDATION REASON CODES
Assigned by Geosyntec’s Data Validation Team

<table>
<thead>
<tr>
<th>Valid Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preservation requirement not met</td>
</tr>
<tr>
<td>2</td>
<td>Analysis holding time exceeded</td>
</tr>
<tr>
<td>3</td>
<td>Blank contamination (i.e., method, trip, equipment, etc.)</td>
</tr>
<tr>
<td>4</td>
<td>Matrix spike/matrix spike duplicate recovery or RPD outside limits</td>
</tr>
<tr>
<td>5</td>
<td>LCS or RPD recovery outside limits (LCS/LCSD)</td>
</tr>
<tr>
<td>6</td>
<td>Surrogate recovery outside limits</td>
</tr>
<tr>
<td>7</td>
<td>Field Duplicate RPD exceeded</td>
</tr>
<tr>
<td>8</td>
<td>Serial dilution percent difference exceeded</td>
</tr>
<tr>
<td>9</td>
<td>Calibration criteria not met</td>
</tr>
<tr>
<td>10</td>
<td>Linear range exceeded</td>
</tr>
<tr>
<td>11</td>
<td>Internal standard criteria not met</td>
</tr>
<tr>
<td>12</td>
<td>Lab duplicates RPD exceeded</td>
</tr>
<tr>
<td>13</td>
<td>Other</td>
</tr>
</tbody>
</table>